Spatial Autocorrelation of Diarrhea Cases in West Java Province in 2023

  • Tri Wahyudi Departemen Biostatistika, Fakultas Kesehatan Masyarakat, Universitas Indonesia
  • Popy Yuniar Departemen Biostatistika, Fakultas Kesehatan Masyarakat, Universitas Indonesia
  • Martya Rahmaniati Departemen Biostatistika, Fakultas Kesehatan Masyarakat, Universitas Indonesia
Keywords: Diarrhea, Autocorrelation, Moran Index

Abstract

Introduction: Diarrhea have been being a significant public health threat for the community due to its impact on morbidity and even mortality especially among infants and toddlers. Understanding the pattern of diarrhea, how the key factors influence the prevalence of the disease and which areas are at the highest risk could help in controlling diarhhea.

Objective: Through spatial autocorrelation analysis of diarrhea prevalence with several risk factors, such as open defecation behavior, population density, access to proper sanitation, availability of drinking water facilities, and the number of health centers in West Java Province in 2023, this study aims to identify which districts/cities in the province are at high risk of diarrhea.

Method: This ecological study analyzed 27 districts/cities in West Java Province in 2023 using secondary data from Open Data Jabar. The dependent variable was the number of diarrhea cases, while independent variables included key factors influencing the prevalence of diarrhea. The Moran index was used for autocorrelation tests, The study used Geoda software version 1.22.

Result: The study found positive autocorrelation pattern between diarrhea prevalence and population density as well as access to proper sanitation. Negative autocorrelatios found for the other factors i.e. the number of drinking water facilities, the number of villages that stopped open defecation and the number of health centers. The risk analysis reveals four districts categorized as high risk of diarrhea: Depok City, Bekasi City, Bogor City, and Cianjur City. Depok City has the highest score of 12, due to high population density and lack of access to proper sanitation. Bekasi, Bogor City, and Cianjur have the next highest scores, with proper sanitation being the largest contributing factor.

Conclusion: Autocorrelation analysis can help understand diarrhea patterns and factors influencing its prevalence, provide guidance for program implementation and prioritization to address the most high risk areas.

References

Anuraga G, Sulistiyawan E. Autokorelasi Spasial Untuk Pemetaan Karakteristik Indeks Pembangunan Kesehatan Masyarakat (IPKM) pada Kabupaten/Kota di Jawa Timur. Statistika. 2017;5(2):32-41. doi: https://doi.org/10.26714/jsunimus.5.2.2017.%25p.

ArcGIS Pro. How Spatial Autocorrelation (Global Moran's I) works [Internet]. [updated 2024; cited 2024 August 3]. Available from: https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/h-how-spatial-autocorrelation-moran-s-i-spatial-st.htm.

Bellinda O. Hubungan Perilaku Buang Air Besar Sembarangan dan Fasilitas Sanitasi Dengan Kejadian Diare Pada Balita di Rw 02 Kelurahan Duri Utara Kecamatan Tambora Jakarta Barat Tahun 2019 [Skripsi]. Jakarta: Poltekkes Kemenkes Jakarta II; 2019. Available from: https://perpus.poltekkesjkt2.ac.id/respoy/index.php?p=show_detail&id=2325&keywords=.

Charis C, Tedjo P, Martono B. Analisis Dampak Kepadatan Penduduk Terhadap Kualitas Hidup Masyarakat Provinsi Jawa Tengah. Serat Acitya. 2014; 3(1):102-114. doi: http://dx.doi.org/10.56444/sa.v3i1.125.

Fajriyah I. Sistem Informasi Geografis Faktor yang Mempengaruhi Jumlah Kasus Diare di Kabupaten Sidoarjo Tahun 2019. Preventif: Jurnal Kesehatan Masyarakat. 2023; 14(1):38-46. doi: https://doi.org/10.22487/preventif.v14i1.334.

Habinuddin E. Identifikasi Autokorelasi Spasial Pada Penyebaran Penyakit Demam Berdarah Dengue di Kota Bandung. SIGMA-Mu. 2021; 13(1);7-15. doi: https://doi.org/10.35313/sigmamu.v13i1.3648.

Hariani, Ramlah. Pelaksanaan Program Penanggulangan Diare Di Puskesmas Matakali. Jurnal Kesehatan Masyarakat. 2019; 5(1):34-46. doi: https://dx.doi.org/10.35329/jkesmas.v5i1.307.

Kementerian Kesehatan. Profil Kesehatan Indonesia Tahun 2023 [Internet]. Jakarta: Kementerian Kesehatan; 2024. [updated 2024; cited 2024 August 3]. Available from: https://kemkes.go.id/id/indonesia-health-profile-2023.

Kementerian Kesehatan. Laporan Nasional Riskesdas 2018 [Internet]. Jakarta: Kementerian Kesehatan; 2024. [updated 2024; cited 2024 August 3]. Available from: https://repository.badankebijakan.kemkes.go.id/id/eprint/3514/1/Laporan%20Riskesdas%202018%20Nasional.pdf.

Kementerian Kesehatan. Survei Kesehatan Indonesia tahun 2023 [Internet]. Jakarta: Kementerian Kesehatan; 2024. [updated 2024; cited 2024 August 3]. Available from: https://www.kemkes.go.id/id/survei-kesehatan-indonesia-ski-2023.

Kent JT, Mardia KV. Spatial Analysis: 1st ed. New Jersey: John Wiley and Sons; 2022.

Pemerintah Provinsi Jawa Barat. Open Data Jabar [Internet]. Bandung: Pemerintah Provinsi Jawa Barat; 2024. [updated 2024; cited 2024 August 3]. Available from: https://opendata.jabarprov.go.id/id/dataset/jumlah-kasus-penyakit-diare-berdasarkan-kabupatenkota-di-jawa-barat.

Rahmadani P, Nasriyah SF. Analisis Autokorelasi Spasial Global dan Lokal Kasus Penumonia di Kota Depok Tahun 2020. Media Publikasi Promosi Kesehatan Indonesia. 2022; 5(12):1590-1598. doi: https://doi.org/10.56338/mppki.v5i12.2789.

Ratanti FWN. Analisis Spasial Kejadian Diare Pada Balita di Provinsi Jawa Tengah Tahun 2021 [Skripsi]. Depok: FKM UI; 2023. Available from: https://lib.ui.ac.id/detail?id=9999920525318&lokasi=lokal.

Riznawati A, Yudhistira D, Rahmaniati M, Sipahutar T, Eryando T. Autokorelasi Spasial Prevalensi Stunting di Jawa Barat Tahun 2021. Bikfokes. 2022; 3(1):14-21. Available from: https://www.academia.edu/download/104312285/1604.pdf.

Saputro DRS, Widyaningsih P, Kurdi N A, Hardanti, Susanti A. Local Indicator Of Spatial Association (LISA) Cluster Map untuk Identifikasi Penyebaran dan Pemetaan Penyakit Demam Berdarah Dengue (DBD) di Jawa Tengah. In: Prosiding Seminar Matematika dan Pendidikan Matematika UNY. 2017. Available from: https://seminar.uny.ac.id/semnasmatematika/sites/seminar.uny.ac.id.semnasmatematika/files/full/S-4.pdf.

Sofyan LP, Eryando T, Yuswanto TJA. Hotspots Penyebaran Diare Berbasis Analisis Autokorelasi Spasial di Kabupaten Bogor. Jurnal Penelitian Kesehatan Suara Forikes. 2024; 15(2):192-196. doi: http://dx.doi.org/10.33846/sf15204.

Syukri M, Nasution HS, Amir A, Faisal, Pebrianti H, Zulfah S. Autokorelasi Spasial Kasus Demam Berdarah di Kota Jambi Tahun 2020. Gema Wiralodra. 2022;13(2):764-771. doi: https://doi.org/10.31943/gemawiralodra.v13i2.283.

World Health Organization. Diarrhoeal Disease [Internet]. Geneva: World Health Organization; 2024. [updated 2024; cited 2024 August 3]. Available from: https://www.who.int/news-room/fact-sheets/detail/diarrhoeal-disease.

Yantu SS, Warouw F, Umboh JML. Hubungan Antara Sarana Air Bersih dan Jamban Keluarga Dengan Kejadian Diare Pada Balita Di Desa Waleure. Jurnal Kesehatan Masyarakat Universitas Sam Ratulangi. 2021; 10(6):24-30. Available from: https://ejournal.unsrat.ac.id/v3/index.php/kesmas/article/view/35445.

Yuliana R, Rahmaniati M, Apriantini I, Triarjunet R. Analisis Autokorelasi Spasial Kasus Demam Berdarah Dengue di Kota Padang. JIK (Jurnal Ilmu Kesehatan). 2022; 6(1):34-42. doi: 10.33757/jik.v6i1.484.g210.

Published
2024-09-06
How to Cite
Wahyudi, T., Yuniar, P., & Rahmaniati , M. (2024). Spatial Autocorrelation of Diarrhea Cases in West Java Province in 2023. Media Publikasi Promosi Kesehatan Indonesia (MPPKI), 7(9), 2368-2376. https://doi.org/10.56338/mppki.v7i9.5973