Moran’s Index Spatial Analysis On The New Case Detection Rate of Leprosy in West Java 2022

  • Meuthia Jasmine Division of Biostatistics and Population, Faculty of Public Health, Airlangga University, Kampus C Mulyorejo, Jawa Timur – 60115
  • Arief Wibowo Division of Biostatistics and Population, Faculty of Public Health, Airlangga University, Kampus C Mulyorejo, Jawa Timur – 60115
Keywords: Leprosy, Moran’s Index, Spatial Dependency

Abstract

Introduction: Leprosy is a chronic infectious disease, neglected tropical disease caused by Mycobacterium leprae. Leprosy is divided into two types based on the number of lesions on the skin. If there are less than 5 lesions, leprosy is classified as paucibacillary (PB) and if there are more than 5 lesions, leprosy is classified as multibacillary (MB). Indonesia is ranked third in the world after Brazil with 762 new cases of grade 2 disability leprosy by 2022. Therefore, spatial analysis of the new case detection rate of leprosy in West Java 2022 is needed.

Objective: To determine wheter there are spatial dependency with the new case detection rate of leprosy in West Java 2022

Method: Quantitative research that utilises secondary data by conducting spatial analysis on the new case detection rate of leprosy in West Java 2022 using Moran's Index and LISA tests.

Result: There are 5 areas namely Bekasi, Karawang, Subang, Indramayu, and Cirebon that have not yet reached the national target in eliminating leprosy. The value of Moran's I = 0.241 and p-value 0.0090 < ? (0.05) which means that there is a weak positive spatial dependence on the number of new leprosy cases in West Java Province 2022. There is 1 region that is in the high-high quadrant, namely Cirebon and there are 4 regions in the low-low quadrant, namely Cimahi City, Bandung City, Garut, and Tasikmalaya.

Conclusion: A small number of areas in West Java Province still have not reached the national target of eliminating leprosy, which is a CDR of <5 per 100.000 population, namely Bekasi, Karawang, Subang, Indramayu, and Cirebon. There are 5 areas that have spatial linkages in the new case detection rate of leprosy in West Java Province in 2022 based on the significance value. The region in the high-high quadrant is Cirebon and there are 4 regions in the low-low quadrant, namely Cimahi City, Bandung City, Garut District, and Tasikmalaya District.

References

Dinkes Prov. Jabar. Profil Kesehatan Jawa Barat Tahun 2022. Dinas Kesehatan Provinsi Jawa Barat; 2023.

Gilmore A, Roller J, Dyer JA. Leprosy (Hansen’s disease): An Update and Review. Mo Med. 2023;120(1):39–44.

WHO. Towards zero leprosy. Global leprosy (?Hansen’s Disease)? strategy 2021–2030 [Internet]. WHO Press; 2021 [cited 2024 Apr 24]. Available from: https://www.who.int/publications/i/item/9789290228509

Global Health Observatory. WHO. World Health Organization; 2023 [cited 2024 Apr 28]. Number of new leprosy cases with G2D - Data by country. Available from: https://apps.who.int/gho/data/node.main.NTDLEPR5?lang=en

BPS. Statistik Indonesia 2022 [Internet]. Badan Pusat Statistik; 2022 [cited 2024 Jan 18]. Available from: https://www.bps.go.id/id/publication/2022/02/25/0a2afea4fab72a5d052cb315/statistik-indonesia-2022.html

BPS. Statistik Indonesia 2023 [Internet]. Badan Pusat Statistik; 2023 [cited 2024 Jan 18]. Available from: https://www.bps.go.id/id/publication/2023/02/28/18018f9896f09f03580a614b/statistik-indonesia-2023.html

BPS Prov. Jabar. Provinsi Jawa Barat Dalam Angka 2023 [Internet]. BPS Provinsi Jawa Barat; 2023 [cited 2023 Oct 18]. Available from: https://jabar.bps.go.id/publication/2023/02/28/57231a828abbfdd50a21fe31/provinsi-jawa-barat-dalam-angka-2023.html

Wahyuni NW, Makful MR. Analisis Spasial Kasus Pneumonia di Provinsi Sumatera Barat (Daratan) Tahun 2022. Media Publ Promosi Kesehat Indones MPPKI. 2024 Apr 1;7(4):985–90.

Kira R, Bilung LM, Ngui R, Apun K, Su’ut L. Spatially varying correlation between environmental conditions and human leptospirosis in Sarawak, Malaysia. Trop Biomed. 2021 Jun 30;38(2):31–9.

Budiarti TN, Indriani D, Ulya DI. K-Means Clustering Untuk Pengelompokan Wilayah Berdasarkan Kondisi Lingkungan Fisik, Sosial, dan Pelayanan Kesehatan. Berk Ilm Mhs Kesehat Masy Indones. 2022;9(2):18–25.

Xue M, Zhong J, Gao M, Pan R, Mo Y, Hu Y, et al. Analysis of spatial–temporal dynamic distribution and related factors of tuberculosis in China from 2008 to 2018. Sci Rep. 2023 Mar 27;13(1):4974.

Melanwati RL, Sumarminingsih E, Pramoedyo H. Transformasi Kota Cerdas dalam Mitigasi Banjir: Pemodelan Curah Hujan DKI Jakarta dengan Pendekatan Spatial Vector Autoregressive (SpVAR) dan Pemetaan Bobot Queen Contiguity. J Teknol Inf Dan Ilmu Komput. 2023 Dec 30;10(6):1285–94.

Aswi A, Cramb S, Duncan E, Mengersen K. Detecting Spatial Autocorrelation for a Small Number of Areas: a practical example. J Phys Conf Ser. 2021 May;1899(1):012098.

Sabil RM, Sastri R. On The Modelling of Leprosy Prevalence in South Sulawesi Using Spatial Autoregressive Model. Indones J Stat Its Appl. 2020 Jul 31;4(2):245–53.

Bueno I de C, Lages D dos S, Lana FCF. Spatial analysis of the epidemiological risk of leprosy in the municipalities of Minas Gerais. PLoS Negl Trop Dis. 2023 Jun 5;17(6):e0011381.

Putri RA, Febriyanty D. Determinants of Leprosy Incidence in The Work Area of The Kebon Jeruk Health Center in 2019. Muhammadiyah Int Public Health Med Proceeding. 2021 Nov 1;1(1):867–76.

Pescarini JM, Strina A, Nery JS, Skalinski LM, Andrade KVF de, Penna MLF, et al. Socioeconomic risk markers of leprosy in high-burden countries: A systematic review and meta-analysis. PLoS Negl Trop Dis. 2018 Jul;12(7):e0006622.

Published
2024-06-03
How to Cite
Jasmine, M., & Wibowo, A. (2024). Moran’s Index Spatial Analysis On The New Case Detection Rate of Leprosy in West Java 2022 . Media Publikasi Promosi Kesehatan Indonesia (MPPKI), 7(6), 1599-1603. https://doi.org/10.56338/mppki.v7i6.5317