Analisis Jalur: Gangguan Fungsi Nefron Tikus (Rattus Norvegicus) Akibat Mengkonsumsi Partikel Mikroplastik Polietilena

Pathway Analysis: Disorders of Nephron Function in Rats (Rattus Norvegicus) Due to Intake of Polyethylene Microplastic Particles

  • Yudhiakuari Sincihu Fakultas Kedokteran, Universitas Katolik Widya Mandala Surabaya
  • Mujib Hannan Universitas Wiraraja
  • Niluh Suwasanti Fakultas Kedokteran, Universitas Katolik Widya Mandala Surabaya
  • Laura Wihanto Fakultas Kedokteran, Universitas Katolik Widya Mandala Surabaya
  • Nita Kurniawati Fakultas Kedokteran, Universitas Katolik Widya Mandala Surabaya
  • Dewa Ayu Liona Dewi Fakultas Kedokteran, Universitas Katolik Widya Mandala Surabaya
  • Steven Fakultas Kedokteran, Universitas Katolik Widya Mandala Surabaya
  • Sianty Dewi Fakultas Kedokteran, Universitas Katolik Widya Mandala Surabaya
  • Ari Christy Mulyono Fakultas Kedokteran, Universitas Katolik Widya Mandala Surabaya
  • Irene Lingkan Parengkuan Fakultas Kedokteran, Universitas Katolik Widya Mandala Surabaya
  • Henry Ricardo Handoyo Fakultas Kedokteran, Universitas Katolik Widya Mandala Surabaya
  • FX Himawan Jong Fakultas Kedokteran, Universitas Katolik Widya Mandala Surabaya
  • Andre Young Fakultas Kedokteran, Universitas Katolik Widya Mandala Surabaya
  • Alvin Julian Fakultas Kedokteran, Universitas Katolik Widya Mandala Surabaya
  • Angeline Rivia Simanjuntak Fakultas Kedokteran, Universitas Katolik Widya Mandala Surabaya
  • Marion Florentia Fakultas Kedokteran, Universitas Katolik Widya Mandala Surabaya
Keywords: Fungsi Ginjal, Mikroplastik, Nefrotoksik, Ox-LDL, Polietilena

Abstract

Latar belakang: Pencemaran plastik menjadi isu kesehatan saat ini. Partikel plastik berukuran mikron (MPs) dapat mengganggu kesehatan karena terkonsumsi secara tidak sengaja oleh mahluk hidup dan masuk kedalam rantai makanan manusia. Polietilena salah satu polimer plastik yang banyak mengkontaminasi makanan manusia. Partikel plastik yang terabsorbsi akan mengalami persisten dan bioakumulasi dalam darah. Partikel ini mengandung bahan toksik sehingga menimbulkan reaksi oksidasi pada komponen biologi, salah satunya low-density lipoprotein (LDL). Ox-LDL menyebabkan kerusakan pertahanan nefron sehingga memicu kaskade kerusakan. Indikator kerusakan fungsi nefron ginjal berupa serum albumin, blood urea nitrogen, dan serum kreatinin.

Tujuan: Menjelaskan mekanisme gangguan fungsi nefron akibat mengkonsumsi partikel MPs polietilena.

Metode: Penelitian eksperimental murni pada 42 ekor tikus (Rattus norvegicus) yang dikelompok secara random menjadi 6 kelompok. Desain penelitian adalah post-test only control group. Dosis paparan yakni 0mg; 0,0375mg; 0,075mg; 0,15mg, 0,3mg, 0,6mg partikel MPs per hari diberikan secara berurutan pada setiap kelompok. Pemberian bahan MPs menggunakan sonde oral selama 90 hari. Data di analisis menggunakan program Smart-PLS untuk membuat model mekanisme gangguan fungsi nefron akibat mengkonsumsi partikel MPs.

Hasil: Paparan peroral partikel MPs pada tikus secara signifikan meningkatkan kadar partikel MPs dalam darah dan Ox-LDL darah. Keberadaan MPs dalam darah juga akan meningkatkan Ox-LDL darah, selain itu menurunkan kadar serum albumin, meningkatkan kadar blood urea nitrogen dan serum kreatinin darah. Sedangkan peningkatan Ox-LDL hanya berkontribusi terhadap terjadinya penurunan kadar serum albumin dan peningkatan kadar blood urea nitrogen darah (semua nilai T-stat > 1,96).

Kesimpulan: Mengkonsumsi partikel MPs dapat menyebabkan gangguan fungsi nefron pada tikus.

References

Wright, S. L. and Kelly, F. J. (2017) ‘Plastic and Human Health: A micro issue?’, Environment Science Technology, 51(12), pp. 6634–6647.

Jambeck, J. R. et al. (2015) ‘Plastic Waste Inputs from Land into The Ocean’, Science, 347(6223), pp. 768–771.

Diaz-Basantes, M. F. Conesa, J. A. and Fullana, A. (2020) ‘Microplastics in Honey, Beer, Milk and Refreshments in Ecuador as Emerging Contaminant’, Sustainability, 12(14):5514.

Lee, H. et al. (2019) ‘Microplastic Contamination of Table Salts from Taiwan, Including a Global Review’, Science Reports, 9(1), pp. 10145.

Ribeiro, F. et al. (2020) ‘Quantitative Analysis of Selected Plastics in High-Commercial-Value Australian Seafood by Pyrolysis Gas Chromatography Mass Spectrometry’, Environment Science Technology, 54(15), pp. 9408–9417.

Oliveri, C. G. et al. (2020) ‘Micro- and Nano-Plastics in Edible Fruit and Vegetables. The First Diet Risks Assessment for The General Population’, Environment Research, 187, pp. 109677.

Cox, K. D. et al. (2019) ‘Human Consumption of Microplastics’, Environment Science Technology, 53(12), pp. 7068–7074.

Senathirajah, K. et al. (2021) ‘Estimation of The Mass of Microplastics Ingested – A Pivotal First Step Towards Human Health Risk Assessment’, Journal of Hazard Materials, 404, pp. 124004.

Toussaint, B. et al. (20190 ‘Review of Micro- and Nanoplastic Contamination in The Food Chain’, Food Additives and Contaminants, 36(5), pp. 639–673.

Rahman, A. et al. (2021) ‘Potential Human Health Risks Due to Environmental Exposure to Nano- and Microplastics and Knowledge Gaps: A Scoping Review’, Science of The Total Environment, 757, pp. 143872.

Prata, J. C. et al. (2020) ‘Environmental Exposure to Microplastics: An Overview on Possible Human Health Effects’, Science of The Total Environment, 702, pp. 134455.

Poznyak, A. V. et al. (2021) ‘Overview of OxLDL and Its Impact on Cardiovascular Health: Focus on Atherosclerosis’, Frontiers Pharmacology, 11, pp. 11-20.

Zheng, T. Yuan, D. and Liu, C. (2019) ‘Molecular Toxicity of Nanoplastics Involving in Oxidative Stress and Desoxyribonucleic Acid Damage’, Journal of Molecular Recognition, 32(11), pp. 1-12.

G?secka, A. et al. (2021) ‘LDL-Cholesterol and Platelets: Insights into Their Interactions in Atherosclerosis’, Life, 11(1), pp. 39-48.

Dennis, J. and Witting, P. (2017) ‘Protective Role for Antioxidants in Acute Kidney Disease’, Nutrients, 9(7), pp. 718-727.

Roumeliotis, S. et al. (2021) ‘Oxidized LDL is Associated with eGFR Decline in Proteinuric Diabetic Kidney Disease: A Cohort Study’, Oxid Med Cell Longev, 2021, pp. 1–9.

Guyton, J. and Hall. (2018) ‘Buku Ajar Fisiologi Kedokteran. 13th ed. -M. Widjajakusumah, Antonia Tanzil, Ermita Ilyas’, Elsevier, 2018, pp. 79-102.

Deng, Y. et al. (2017) ‘Tissue Accumulation of Microplastics in Mice and Biomarker Responses Suggest Widespread Health Risks of Exposure’, Scientific Reports, 7(1), pp. 46687.

Cheon, J. H. et al. (2016) ‘Pyruvate Kinase M2: A Novel Biomarker for the Early Detection of Acute Kidney Injury’, Toxicological Research, 32(1), pp. 47–56.

Wiedermann, C. J. Wiedermann, W. and Joannidis, M. (2010) ‘Hypoalbuminemia and Acute Kidney Injury: A Meta-Analysis of Observational Clinical Studies’, Intensive care medicine, 36(10), pp. 1657–1665.

Banaee, M. et al. (2021) ‘Effects of Microplastic Exposure on The Blood Biochemical Parameters in The Pond Turtle (Emys Orbicularis)’, Environmental Science and Pollution Research, 28(8), pp. 9221–9234.

Liebmann, B. et al. (2018) ‘Assessment of Microplastic Concentrations in Human Stool - Final Results of a Prospective Study’ in Conference on Nano and microplastics in technical and freshwater systems, Microplastics 2018 At: Monte Verità, Ascona, Switzerland. Medical University of Vienna.

Deng, Y., Zhang, Y., Qiao, R., Bonilla, M. M., Yang, X., Ren, H. and Lemos, B. (2018). ‘Evidence that Microplastics Aggravate the Toxicity of Organophosphorus ?ame Retardants in Mice (Mus Musculus)’, Journal of Hazardous Materials, 6(June), pp. 1-28. doi: 10.1016/j.jhazmat.2018.06.017.

Hwang, J. et al. (2020) ‘Potential Toxicity of Polystyrene Microplastic Particles’, Scientific reports, 10(2020), pp7391. doi: https://doi.org/10.1038/s41598-020-64464-9.

Mercogliano, R. et al. (2020) ‘Occurrence of Microplastics in Commercial Seafood under the Perspective of the Human Food Chain. A Review’, Journal of Agricultural and food chemistry, 68(19), pp. 5296-5301. doi: https://doi.org/10.1021/acs.jafc.0c01209.

Sincihu, Y. et al. (2023) ‘Wistar Rats Hippocampal Neurons Response to Blood Low-Density Polyethylene Microplastics: A Pathway Analysis of SOD, CAT, MDA, 8-OHdG Expression in Hippocampal Neurons and Blood Serum A?42 Levels’, Neuropsychiatric Disease and Treatment, 19(2023), pp. 73-83. doi: https://doi.org/10.2147/NDT.S396556.

Choi, D. et al. (2021) ‘In Vitro Toxicity from a Physical Perspective of Polyethylene Microplastics Based on Statistical Curvature Change Analysis’, Science of The Total Environment, 752(January), pp. 142242. doi: https://doi.org/10.1016/j.scitotenv.2020.142242.

Fred-Ahmadu, O. H. et al. (2020) ‘Interaction of Chemical Contaminants with Microplastics: Principles and Perspectives’, Science of The Total Environment, 706(March), pp. 135978. doi: https://doi.org/10.1016/j.scitotenv.2019.135978.

Hollman, P., Bouwmeester, H. and Peters, R. (2013) ‘Microplastics in The Aquatic Food Chain: Sources, Measurement, Occurrence and Potential Health Risks’. Netherlands: RIKILT Wageningen UR. June:7-32.

Sincihu, Y. Elias, S. M. and Keman, S. (2022) ‘Low-Density Polyethylene Microplastics in Blood Does Not Increase Serum A?1-42 Levels as a Biomarker of Alzheimer’s Disease in Wistar rats’, Journal of Pharmaceutical Negative Results, 13(4), pp. 1837-1844. doi: 47750/pnr.2022.13.04.252.

Hamed, M. et al. (2019) ‘Assessment the Effect of Exposure to Microplastics in Nile Tilapia (Oreochromis Niloticus) Early Juvenile: Blood Biomarkers’, Chemosphere, 228(2019), pp. 354-350. doi: https://doi.org/10.1016/j.chemosphere.2019.04.153.

Sen, Y. Z. et al. (2022) ‘Evidence on Invasion of Blood, Adipose Tissues, Nervous System and Reproductive System of Mice After a Single Oral Exposure: Nanoplastics versus Microplastics’, Biomedical and Enviromental Sciences, 35(11), pp. 1025-1037. doi: https://doi.org/10.3967/bes2022.131.

Lee, S. et al (2022) ‘Toxicity Study and Quantitative Evaluation of Polyethylene Microplastics in ICR Mice’, Polymers, 14(3), pp. 402. doi: https://doi.org/10.3390/polym14030402.

Campanale, C. et al. (2020) ‘A Detailed Review Study on Potential E?ects of Microplastics and Additives of Concern on Human Health’, International Journal of Environmental Research and Public Health, 17(1212), pp. 1-26. doi:10.3390/ijerph17041212.

Haghi, B.N. and Banaee, M. (2017) ‘Effects of Micro-Plastic Particles on Paraquat Toxicity to Common Carp (Cyprinus carpio): Biochemical Changes. International Journal of Environmental Sciences Technology, 14(March), pp. 521–530. doi: https://doi.org/10.1007/s13762-016-1171-4.

Nnoruka, A. C. et al. (2022) ‘Impact of Polystyrene Microplastic Exposure on Lipid Profile and Oxidative Stress Status of Male and Female Wistar rats’, Environmental Analysis, Health and Toxicology, 37(3), pp. e2022024. doi: 10.5620/eaht.2022024.

Kattoor, A.J. et al. (2019) ‘Role of Ox-LDL and LOX-1 in Atherogenesis’, Current Medicinal Chemistry, 26(9), pp.1693-1700.

Wang, W. et al. (2023) ‘Polystyrene Microplastics Induced Nephrotoxicity Associated with Oxidative Stress, Inflammation, and Endoplasmic Reticulum Stress in Juvenile Rats’, Nutrition and Food Science Technology, 9(January), pp. 1059660. doi: https://doi.org/10.3389/fnut.2022.1059660.

Meng, X. et al. (2022) ‘Effects of Nano- and Microplastics on Kidney: Physicochemical Properties, Bioaccumulation, Oxidative Stress and Immunoreaction’, Chemosphere, 288(part7), pp. 132631.

Palyama, P. N. Sincihu, Y. and Parengkuan I. L. (2023). ‘Effect of Oral Intake of Microplastic on The Changes in Nephron Structure Among Male Wistar Rats’, Widya Medika Junior, 5(3), pp. 162-169.

Published
2024-01-02
How to Cite
Sincihu, Y., Mujib Hannan, Niluh Suwasanti, Laura Wihanto, Nita Kurniawati, Dewa Ayu Liona Dewi, Steven, Sianty Dewi, Ari Christy Mulyono, Irene Lingkan Parengkuan, Henry Ricardo Handoyo, FX Himawan Jong, Andre Young, Alvin Julian, Angeline Rivia Simanjuntak, & Marion Florentia. (2024). Analisis Jalur: Gangguan Fungsi Nefron Tikus (Rattus Norvegicus) Akibat Mengkonsumsi Partikel Mikroplastik Polietilena: Pathway Analysis: Disorders of Nephron Function in Rats (Rattus Norvegicus) Due to Intake of Polyethylene Microplastic Particles. Media Publikasi Promosi Kesehatan Indonesia (MPPKI), 7(1), 134-143. https://doi.org/10.56338/mppki.v7i1.4240