Peran Microfolds Cell dalam Imunitas Mukosa Terhadap Patogenesis Tuberkulosis Paru: Sebuah Tinjauan Pustaka Singkat
The Role of Microfold (M) Cells in Mucosal Immunity Against the Pathogenesis of Pulmonary Tuberculosis: A Brief Literature Review
Abstract
Tuberkulosis merupakan penyakit menular yang disebabkan oleh Mycobacterium tuberculosis dan tetap menjadi penyebab utama morbiditas serta mortalitas global. Lebih dari 10,8 juta kasus baru dan 1,25 juta kematian per tahun, Tuberkulosis masih menjadi tantangan besar terutama bagi negara berpenghasilan menengah ke bawah seperti Indonesia yang menempati peringkat kedua kasus Tuberkulosis terbanyak di dunia. Meskipun mekanisme patogenesis Tuberkulosis melalui Microfold cell dan Scavenger Receptor Class B Type 1 menunjukkan peran penting dalam transmisi awal infeksi, penelitian terkait masih terbatas dan belum sepenuhnya dipahami. Artikel review ini bertujuan merangkum temuan terbaru mengenai hubungan Microfold cell dan Scavenger Receptor Class B Type 1 dengan transmisi awal Mycobacterium tuberculosis serta mengevaluasi implikasinya terhadap pengembangan strategi preventif berbasis target patogenesis. Pada artikel review ini akan membahas tentang tahap awal infeksi, sel khusus di saluran pernapasan (Microfold cell), dan juga tahapan patogenesis oleh Tuberkulosis secara komprehensif. Diharapkan, pemahaman yang lebih mendalam mengenai interaksi Mycobacterium tuberculosis dengan Microfold cel dan Scavenger Receptor Class B Type 1 dapat menjadi dasar pengembangan pendekatan pencegahan dan intervensi terapeutik yang lebih efektif dalam pengendalian tuberkulosis.
References
Anes E, Pires D, Mandal M, Azevedo-Pereira JM. ESAT-6 a major virulence factor of Mycobacterium tuberculosis. Biomolecules. 2023;13(6):968. doi:10.3390/biom13060968.
Bar-Oz M, Meir M, Barkan D. Virulence-associated secretion in Mycobacterium abscessus. Front Immunol. 2022;13:938896. doi:10.3389/fimmu.2022.938896
Batt SM, Minnikin DE, Besra GS. The thick waxy coat of mycobacteria, a protective layer against antibiotics and the host’s immune system. Biochemical Journal. 2020;477(10):1983–2006. doi:10.1042/BCJ20200194.
Camarasa TMN, Iseppi L, Schreiner D, King CG. Tertiary lymphoid structures in tuberculosis: persistence, protection, and pathology. Immunol Rev. 2025 Aug;333(1):e70055. doi:10.1111/imr.70055. PMID:40815083. PMCID:PMC12356069.
Del Castillo D, Lo DD. Deciphering the M-cell niche: insights from mouse models on how microfold cells “know” where they are needed. Front Immunol. 2024;15:1400739. doi:10.3389/fimmu.2024.1400739
Davis JD, Wypych TP. Cellular and functional heterogeneity of the airway epithelium. Mucosal Immunol. 2021;14(5):978–990. doi:10.1038/s41385-020-00370-7.
Guler R, Ozturk M, Sabeel S, Motaung B, Parihar SP, Thienemann F, Brombacher F. Targeting molecular inflammatory pathways in granuloma as host-directed therapies for tuberculosis. Front Immunol. 2021;12:733853. doi:10.3389/fimmu.2021.733853.
Ghoshal A, Verma A, Bhaskar A, Dwivedi VP. The uncharted territory of host-pathogen interaction in tuberculosis. Front Immunol. 2024;15:1339467. doi:10.3389/fimmu.2024.1339467.
Huby T. Étude d’acteurs moléculaires et cellulaires dans le métabolisme du cholestérol [Habilitation thesis]. Paris: Sorbonne Université; 2022. Available from: https://hal.sorbonne-universite.fr/tel-04034820
Huang, L., Shaul, P.W., Kim, J., Xie, Y., Mitchell, R.B. and Shiloh, M.U. (2020). Identification of scavenger receptor B1 as the airway microfold cell receptor for Mycobacterium tuberculosis. [online] 9. doi:https://doi.org/10.7554/elife.52551.
IisSousa J, et al. Endoplasmic reticulum stress in tuberculosis: molecular basis and implications for lung pathology. Cells. 2025;14(3):XXX–XXX. PMCID: PMC12111063.
Italia A, Shaik MM, Peri F. Emerging extracellular molecular targets for innovative pharmacological approaches to resistant Mycobacterium tuberculosis infection. Biomolecules. 2023;13(6):999. doi:10.3390/biom13060999. PMID: 37371579.
Jacobo-Delgado Y, Rodríguez-Carlos A, Serrano CJ, Rivas-Santiago B. Mycobacterium tuberculosis cell-wall and antimicrobial peptides: a mission impossible? Front Immunol. 2023;14:1194923. doi:10.3389/fimmu.2023.1194923.
Karwiti W, Lestari WS, Nasrazuhdy, Rezekiyah S. Perbedaan profil hematologi pada penderita tuberkulosis paru yang menjalani pengobatan. Jambura Journal of Health Sciences and Research. 2021;3(1). doi:10.35971/jjhsr.v3i1.8350.
Kobayashi N, Takahashi D, Takano S, Kimura S, Hase K. The roles of Peyer’s patches and microfold cells in the gut immune system: relevance to autoimmune diseases. Front Immunol. 2019;10:2345. doi:10.3389/fimmu.2019.02345.
Koyuncu D, Niazi MK, Tavalora T, Abeijon C, Ginesse M, Liao Y, et al. Tuberculosis biomarkers discovered using Diversity Outbred mice. PLoS One. 2020;15(3):e0229287. doi:10.1371/journal.pone.0229287
Liu H, Gui X, Chen S, Fu W, Li X, Xiao T, Hou J, Jiang T. Structural variability of lipoarabinomannan modulates innate immune responses within infected alveolar epithelial cells. Cells. 2022;11(3):361. doi:10.3390/cells11030361.
Lefrançais E, Hudrisier D, Neyrolles O, Behar SM, Ernst JD. Finding and filling the knowledge gaps in mechanisms of T cell-mediated Mycobacterium tuberculosis immunity to inform vaccine design. Nat Rev Immunol. 2025 Nov;25(11):798-815. doi:10.1038/s41577-025-01192-z. PMID: 40514544.
Ly A, et al. Mycobacterial virulence factors: surface-exposed lipids and their roles in infection. Microbiol Spectrum. 2020;8(4). PMCID: PMC7312605.
Moule MG, Cirillo JD. Mycobacterium tuberculosis dissemination plays a critical role in pathogenesis. Front Cell Infect Microbiol. 2020;10:65. doi:10.3389/fcimb.2020.00065
Mvubu NE. Innate immune recognition of Mycobacterium tuberculosis: receptor engagement and inflammatory outcomes at the site of infection. Cell Surf. 2025;14:100150. doi:10.1016/j.tcsw.2025.100150.
Pang, J., Raka, F., Heirali, A.A. et al. 2023, ‘Resveratrol intervention attenuates chylomicron secretion via repressing intestinal FXR-induced expression of scavenger receptor SR-B1’, Nature Communications, vol. 14, art. no. 2656, doi: 10.1038/s41467-023-38259-1.
Powers HR, et al. Structural perspectives on the scavenger receptor class B type I (SR-B1). Curr Opin Lipidol. 2022;33:XX–XX. PMCID: PMC8809234.
Rotundo S, Tassone MT, Serapide F, Russo A, Trecarichi EM. Incipient tuberculosis: a comprehensive overview. Infection. 2024;52(4):1215–1222. doi:10.1007/s15010-024-02239-4.
Roy S. ESX secretion system: the gatekeepers of mycobacterial virulence. Front Cell Infect Microbiol. 2020;10:101. (Article on ESX secretion systems in Mycobacterium tuberculosis). PMCID: PMC7753977.
Salen WJ, Viswanathan G, Tobin DM. Mycobacterial evolution intersects with host tolerance. Front Immunol. 2019;10:528. doi:10.3389/fimmu.2019.00528
Semenkovich, C. (n.d.). DISORDERS OF LIPID METABOLISM. [online] Available at: https://www.sciencedirect.com/sdfe/pdf/download/eid/3-s2.0-B978143771604700213X/first- page-pdf.
Tariq EB, Subhan U, Deeba F, Ullah R, Tariq Z, Liaquat A, et al. Scavenger receptor genes polymorphisms association with tuberculosis and latent tuberculosis infection in Pakistani population. Res Sq [Preprint]. 2024. doi:10.21203/rs.3.rs-3856622/v1
Turula H. Natural secretory immunoglobulins facilitate enteric viral infection [dissertation]. Ann Arbor: University of Michigan; 2019. University of Basel. Lung organoids unveil secret: how pathogens infect human lung tissue. ScienceDaily. 2024 Jun 10. Available from: https://www.sciencedaily.com/releases/2024/06/240610140251.htm.
Wei C, Wan L, Yan Q, Wang X, Zhang J, Yang X, Zhang Y, Fan C, Li D, Deng Y, Sun J, Gong J, Wang Y, Li J, Yang H, Li H, Zhang Z, Wang R, Du P, Zong Y, Yin F, Zhang W, Wang N, Peng Y, Lin H, Feng J, Qin C, Chen W, Gao Q, Zhang R, Cao Y, Zhong H. HDL-scavenger receptor B type 1 facilitates SARS-CoV-2 entry. Nat Metab. 2020;2(12):1391-1400. doi:10.1038/s42255-020-00324-0.






