Studi Literatur Stabilitas Fikosianin dalam Berbagai Agen Penstabil untuk Aplikasi Pangan pH Rendah
Literature Study on the Stability of Phycocyanin in Various Stabilizing Agents for Low-pH Food Applications
Abstract
Fikosianin (PC) adalah pewarna biru alami yang potensial, namun aplikasinya terhambat oleh sensitivitasnya yang tinggi terhadap kondisi asam (pH < 4.5), panas, dan cahaya. Ketidakstabilan ini memicu denaturasi protein PC dan degradasi warna yang kurang menguntungkan pada aplikasi produk pangan. Studi literatur ini bertujuan untuk mensintesis data penelitian terdahulu dan mengkategorikan upaya stabilisasi PC menggunakan agen penstabil kimia dan teknologi fisik. Pencarian sistematis dan analisis kualitatif dilakukan terhadap 11 artikel yang terbit di tahun 2018-2025 dengan fokus pada retensi warna di kondisi pH asam. Studi literatur ini mengkategorikan agen penstabil kimia menjadi lima golongan yaitu, protein, polisakarida, kompleks polisakarida-protein, dan bahan non-food grade seperti SDS dan formaldehida. Penggunaan karagenan anionik dinilai signifikan terhadap stabilitas PC secara simultan pada pH 3.0 dan suhu tinggi. Kombinasi lebih dari satu agen penstabil menunjukkan efektivitas tinggi dengan retensi warna mencapai 81.5% pada pH 3.5. Teknologi fisik seperti spray drying, freeze drying, dan high-pressure processing (HPP) dapat dipertimbangkan untuk mempertahankan stabilitas PC. Secara keseluruhan studi literatur ini merekomendasikan kombinasi strategi antara agen penstabil kimia dengan teknologi fisik secara bersamaan. Pengetahuan ini sangat bermanfaat di level industri sebab berkaitan pula dengan efisiensi produksi PC.
References
Falkeborg, M. F., Roda-Serrat, M. C., Burnæs, K. L., & Nielsen, A. L. D. (2018). Stabilising phycocyanin by anionic micelles. Food Chemistry, 239, 771–780. https://doi.org/10.1016/j.foodchem.2017.07.007
Goyudianto, B. A., Meliana, C., Meliana, C., Muliani, D., J, J., Sadeli, Y. E., & Ratnasari, N. R. P. (2021). Stability of Phycocyanin, Phycoerythrin, and Astaxanthin from Algae Towards Temperature, pH, Light, and Oxygen as a Commercial Natural Food Colorant. Indonesian Journal of Life Sciences, 03(02), 28–42. https://doi.org/10.54250/ijls.v3i2.126
Herawati, H. (2018). Potensi Hidrokoloid Sebagai Bahan Tambahan Pada Produk Pangan Dan Nonpangan Bermutu. Jurnal Penelitian Dan Pengembangan Pertanian, 37(1), 17. https://doi.org/10.21082/jp3.v37n1.2018.p17-25
?lter, I., Koç, M., Demirel, Z., Conk Dalay, M., & Kaymak Ertekin, F. (2021). Improving the stability of phycocyanin by spray dried microencapsulation. Journal of Food Processing and Preservation, 45(7), 0–2. https://doi.org/10.1111/jfpp.15646
Kandasamy, S., & Naveen, R. (2022). A review on the encapsulation of bioactive components using spray-drying and freeze-drying techniques. Journal of Food Process Engineering, 45(8), 1–14. https://doi.org/10.1111/jfpe.14059
Lemos, P. V. F., Opretzka, L. C. F., Almeida, L. S., Cardoso, L. G., Silva, J. B. A. da, Souza, C. O. de, Villarreal, C. F., & Druzian, J. I. (2020). Preparation and characterization of C-phycocyanin coated with STMP/STPP cross-linked starches from different botanical sources. International Journal of Biological Macromolecules, 159, 739–750. https://doi.org/10.1016/j.ijbiomac.2020.05.111
Li, Y., Zhang, Z., & Abbaspourrad, A. (2021). Improved thermal stability of phycocyanin under acidic conditions by forming soluble complexes with polysaccharides. Food Hydrocolloids, 119. https://doi.org/10.1016/j.foodhyd.2021.106852
Molopa, S. T. (2024). Artificial intelligence-based literature review adaptation. South African Journal of Library and Information Science, 90(Ifla 2022), 1–18. https://doi.org/10.7553/90-1-2390
Morya, S., Kumar Chattu, V., Khalid, W., Zubair Khalid, M., & Siddeeg, A. (2023). Potential protein phycocyanin: an overview on its properties, extraction, and utilization. International Journal of Food Properties, 26(2), 3160–3176. https://doi.org/10.1080/10942912.2023.2271686
Munawaroh, H. S. H., Gumilar, G. G., Alifia, C. R., Marthania, M., Stellasary, B., Yuliani, G., Wulandari, A. P., Kurniawan, I., Hidayat, R., Ningrum, A., Koyande, A. K., & Show, P. L. (2020). Photostabilization of phycocyanin from Spirulina platensis modified by formaldehyde. Process Biochemistry, 94(April), 297–304. https://doi.org/10.1016/j.procbio.2020.04.021
Newsome, A. G., Culver, C. A., & Van Breemen, R. B. (2014). Nature’s palette: The search for natural blue colorants. Journal of Agricultural and Food Chemistry, 62(28), 6498–6511. https://doi.org/10.1021/jf501419q
Nowruzi, B., Konur, O., & Anvar, S. A. A. (2022). The Stability of the Phycobiliproteins in the Adverse Environmental Conditions Relevant to the Food Storage. Food and Bioprocess Technology, 15(12), 2646–2663. https://doi.org/10.1007/s11947-022-02855-8
Pan-utai, W., & Iamtham, S. (2020). Enhanced microencapsulation of C-phycocyanin from Arthrospira by freeze-drying with different wall materials. Food Technology and Biotechnology, 58(4), 423–432. https://doi.org/10.17113/ftb.58.04.20.6622
Pez Jaeschke, D., Rocha Teixeira, I., Damasceno Ferreira Marczak, L., & Domeneghini Mercali, G. (2021). Phycocyanin from Spirulina: A review of extraction methods and stability. Food Research International, 143(March). https://doi.org/10.1016/j.foodres.2021.110314
Pradeep, H. N., & Nayak, C. A. (2019). Enhanced stability of C-phycocyanin colorant by extrusion encapsulation. Journal of Food Science and Technology, 56(10), 4526–4534. https://doi.org/10.1007/s13197-019-03955-8
Prasetyaningrum, A., Nur Jannah, H., Wheni Indrianingsih, A., & Dwi Anggoro, D. (2024). Phycocyanin Encapsulation in Carboxymethyl Chitosan and Whey Protein Isolate as a Strategy to Enhance Physicochemical Stability as a Food Coloring: A Review. International Journal of Chemical and Biochemical Sciences, 25(19), 656–668. https://doi.org/10.62877/75-ijcbs-24-25-19-75
Stovold, E., Beecher, D., Foxlee, R., & Noel-Storr, A. (2014). Study flow diagrams in Cochrane systematic review updates: An adapted PRISMA flow diagram. Systematic Reviews, 3(1), 1–5. https://doi.org/10.1186/2046-4053-3-54
Wu, M., Zhou, Y., & Tang, R. C. (2023). Bridging phycocyanin onto silk by genipin towards durable colouristic, antioxidant and UV protective properties: A sustainable strategy for fully bio-based textile. Chemical Engineering Journal, 477. https://doi.org/10.1016/j.cej.2023.146808
Xu, W., Xiao, Y., Luo, P., & Fan, L. (2018). Preparation and characterization of C-phycocyanin peptide grafted N-succinyl chitosan by enzyme method. International Journal of Biological Macromolecules, 113(2017), 841–848. https://doi.org/10.1016/j.ijbiomac.2018.02.076
Zhang, S., Zhang, Z., Dadmohammadi, Y., Li, Y., Jaiswal, A., & Abbaspourrad, A. (2021). Whey protein improves the stability of C-phycocyanin in acidified conditions during light storage. Food Chemistry, 344. https://doi.org/10.1016/j.foodchem.2020.128642
Zhang, Z., Cho, S., Dadmohammadi, Y., Li, Y., & Abbaspourrad, A. (2021). Improvement of the storage stability of C-phycocyanin in beverages by high-pressure processing. Food Hydrocolloids, 110, 106055. https://doi.org/10.1016/j.foodhyd.2020.106055
Zhang, Z., Li, Y., & Abbaspourrad, A. (2020). Improvement of the colloidal stability of phycocyanin in acidified conditions using whey protein-phycocyanin interactions. Food Hydrocolloids, 105(November 2019), 105747. https://doi.org/10.1016/j.foodhyd.2020.105747






