Sistem Urban Portable Agriculture Berbasis IoT: Validasi Teknis dan Analisis Kinerja Platform Monitoring Hidroponik Berbiaya Rendah
IoT-Based Urban Portable Agriculture System: Technical Validation and Performance Analysis of a Low-Cost Hydroponic Monitoring Platform
Abstract
Pertanian perkotaan dihadapkan pada tantangan ganda, yaitu kelangkaan lahan dan tingginya biaya adopsi teknologi yang menghambat aksesibilitas bagi petani skala kecil. Penelitian ini bertujuan untuk mengembangkan dan memvalidasi kinerja teknis dari sebuah sistem Urban Portable Agriculture (UPA) berbasis Internet of Things (IoT) sebagai solusi perangkat pemantau hidroponik berbiaya rendah. Dengan menggunakan metodologi rapid prototyping, sistem hidroponik vertikal dirancang dan dibangun, terintegrasi dengan sensor pH dan kekeruhan, serta dilengkapi kontrol pencahayaan LED otomatis dan dasbor visualisasi data real-time. Validasi kinerja sistem melibatkan analisis metrik teknis dan stabilitas operasional menggunakan algoritma klasterisasi Density-Based Spatial Clustering of Applications with Noise (DBSCAN). Hasil penelitian menunjukkan kinerja sistem yang andal, dengan akurasi sensor pH mencapai ±0.1 dan sensor kekeruhan ±2 NTU, serta latensi sistem end-to-end di bawah 5 detik. Analisis DBSCAN mengidentifikasi bahwa sistem beroperasi dalam kondisi stabil sebesar 86.5% dari waktu pengujian, yang menunjukkan reliabilitas operasional yang tinggi. Dengan total biaya realisasi sebesar Rp 2.000.000, prototipe ini secara signifikan lebih terjangkau dibandingkan alternatif komersial. Studi ini berhasil memvalidasi sebuah kerangka kerja teknologi yang fungsional dan terjangkau, serta berkontribusi pada konsep "graduated precision agriculture," yang sangat sesuai untuk aplikasi edukasi dan pertanian urban skala kecil di negara berkembang.
References
Badan Pusat Statistik. 2024. Produksi Tanaman Pangan Nasional (Ton). https://www.bps.go.id/id/statistics-table/2/MjM0NSMy/produksi-tanaman-pangan-nasional--ton-.html.
Bakar, Azinoor Azida Abu et al. 2025. “IoT-Based Real-Time Water Quality Monitoring and Sensor Calibration for Enhanced Accuracy and Reliability.” Int. J. Interact. Mob. Technol. 19: 155–70. https://consensus.app/papers/iotbased-realtime-water-quality-monitoring-and-sensor-bakar-yusoff/fe2ef43906a254a1804bfe10b206aa11/.
Cho, Woo-Jae et al. 2024. “Automated Drift Compensation System for Electrical Conductivity and PH Probes in Hydroponic Systems.” Journal of the ASABE. https://consensus.app/papers/automated-drift-compensation-system-for-electrical-kim-cho/75521c8ff03c5592a288fe6363c56bee/.
Cowan, N et al. 2022. “CEA Systems: The Means to Achieve Future Food Security and Environmental Sustainability?” 6. https://consensus.app/papers/cea-systems-the-means-to-achieve-future-food-security-and-skiba-cowan/f4da6b868c2f5b32b5de1edc6eecc44e/.
Dhillon, Rajveer, and Qianna Moncur. 2023. “Small-Scale Farming: A Review of Challenges and Potential Opportunities Offered by Technological Advancements.” Sustainability 15(21). https://www.mdpi.com/2071-1050/15/21/15478.
Efendi, Rissal, Teguh Wahyono, and Indrastanti Ratna Widiasari. 2024. “DBSCAN SMOTE LSTM: Effective Strategies for Distributed Denial of Service Detection in Imbalanced Network Environments.” Big Data and Cognitive Computing 8(9). https://www.mdpi.com/2504-2289/8/9/118.
Gandharum, Laju et al. 2025. “Agricultural Land Change and Its Farmers’ Perception in the North Coast Region of West Java Province, Indonesia.” IOP Conference Series: Earth and Environmental Science 1462(1): 12027. https://dx.doi.org/10.1088/1755-1315/1462/1/012027.
Ghorbel, Roukaya, Jamel Chakchak, Nedim Ko?um, and Numan Cetin. 2022. “Hydroponic Technology for Green Fodder Production: Concept, Advantages, and Limits.”
Hanafi, Ahmed M et al. 2025. “Revolutionizing Agriculture with IoT, Mobile Apps, and Computer Vision in Automated Hydroponic Greenhouses.” International Journal of Engineering and Applied Sciences-October 6 University 2(1): 1–16.
Ilyas, Ilyas. 2022. “Optimalisasi Peran Petani Milenial Dan Digitalisasi Pertanian Dalam Pengembangan Pertanian Di Indonesia.” FORUM EKONOMI 24: 259–66.
Kaur, Et. 2021. “All about Vertical Farming: A Review.” Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12: 1–14.
Kilian, Axel. 2006. “Design Innovation through Constraint Modeling.” International Journal of Architectural Computing vol. 4 - no. 1, 87-105 4: 87–105.
Konyep, Sostenes. 2021. “Mempersiapkan Petani Muda Dalam Mencapai Kedaulatan Pangan.” Jurnal Triton 12(1): 78–88.
Purwaningsih, Yunastiti. 2008. “KETAHANAN PANGAN: SITUASI, PERMASALAHAN, KEBIJAKAN, DAN PEMBERDAYAAN MASYARAKAT.” Jurnal Ekonomi Pembagunan 9: 1.
Rajak, Prem, Abhratanu Ganguly, Satadal Adhikary, and Suchandra Bhattacharya. 2023. “Internet of Things and Smart Sensors in Agriculture: Scopes and Challenges.” Journal of Agriculture and Food Research 14: 100776. https://www.sciencedirect.com/science/article/pii/S2666154323002831.
Riptanti, Erlyna Wida, Zeino Heka Raharjo, Khairiyakh, and Refaul. 2024. “Dampak Alih Fungsi Lahan Pertanian Terhadap Kondisi Sosial Ekonomi Petani (Studi Kasus Pembangunan Jalan Tol Surakarta €“ Yogyakarta Di Kabupaten Boyolali.” Jurnal Ekonomi Pertanian dan Agribisnis 8(2).
Sondakh, Joula, Janne Rembang, and N F N Syahyuti. 2021. “KARAKTERISTIK, POTENSI GENERASI MILENIAL DAN PERSPEKTIF PENGEMBANGAN PERTANIAN PRESISI DI INDONESIA.” Forum penelitian Agro Ekonomi 38: 155.
Srinidhi, H K, H S Shreenidhi, and G S Vishnu. 2020. “Smart Hydroponics System Integrating with IoT and Machine Learning Algorithm.” In 2020 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT), , 261–64.
Suryaningsih, Y et al. 2023. “Edukasi Peran Generasi Muda Terhadap Pembangunan Pertanian Dalam Mewujudkan Ketahanan Pangan.” Prosiding Seminar Nasional Unars 2(1): 86–93.
Thomaier, Susanne et al. 2015. “Farming in and on Urban Buildings: Present Practice and Specific Novelties of Zero-Acreage Farming (ZFarming).” Renewable Agriculture and Food Systems 30(1): 43–54.s






