Optimalisasi Sensor (SPR) Surface Plasmon Resonance dengan Lapisan Emas dan Perak untuk Deteksi Logam Berat

Optimization of Surface Plasmon Resonance Sensor with Gold and Silver Coating for Heavy Metal Detection

  • Lathifah Dika Mauludi Departemen Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Surabaya
  • Meta Yantidewi Departemen Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Surabaya
  • Rohim Aminullah Firdaus Departemen Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Surabaya
Keywords: Sensor SPR, Lapisan Emas Dan Perak, Logam Berat

Abstract

Penelitian ini mengukur efektivitas lapisan logam berat dengan menggunakan emas (Au) dan perak (Ag) sebagai sensor SPR (Surface Plasmon Resonance). Hasil menunjukkan bahwa perak lebih sensitif dibandingkan emas dalam mendeteksi logam berat (Fe, Pb, Hg) karena interaksi plasmoniknya yang lebih kuat. Emas memiliki stabilitas kimia dan bioaktivitas yang baik, sementara perak menunjukkan sensitivitas dan akurasi lebih tinggi tetapi rentan terhadap oksidasi. Sensor berbasis perak menunjukkan sensitivitas, akurasi deteksi, dan figure of merit (FoM) yang lebih baik dibandingkan sensor berbasis emas, meskipun memerlukan perlindungan tambahan terhadap oksidasi. Kinerja optimal sensor terjadi pada panjang gelombang tertentu (emas pada 650 nm dan perak pada 500 nm), membatasi fleksibilitas dalam aplikasi yang memerlukan panjang gelombang berbeda.

References

Ali, H., Khan, E., & Ilahi, I. (2019). Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. Journal of Chemistry, 2019, 1–14. https://doi.org/10.1155/2019/6730305

Anker, J. N., Hall, W. P., Lyandres, O., Shah, N. C., Zhao, J., & Van Duyne, R. P. (2008). Biosensing with plasmonic nanosensors. Nature Materials, 7(6), 442–453. https://doi.org/10.1038/nmat2162

Du, W., & Zhao, F. (2017). Silicon carbide based surface plasmon resonance waveguide sensor with a bimetallic layer for improved sensitivity. Materials Letters, 186, 224–226. https://doi.org/10.1016/j.matlet.2016.09.120

Edward D. Palik. (1985). Handbook of Optical Constants of Solids (Vol. 1). Elsevier. https://doi.org/10.1016/C2009-0-20920-2

Escobedo, C., Vincent, S., Choudhury, A. I. K., Campbell, J., Brolo, A. G., Sinton, D., & Gordon, R. (2011). Integrated nanohole array surface plasmon resonance sensing device using a dual-wavelength source. Journal of Micromechanics and Microengineering, 21(11), 115001. https://doi.org/10.1088/0960-1317/21/11/115001

Fen, Y. W., & Yunus, W. M. M. (2011). Characterization of the Optical Properties of Heavy Metal Ions Using Surface Plasmon Resonance Technique. Optics and Photonics Journal, 01(03), 116–123. https://doi.org/10.4236/opj.2011.13020

Flora, S. J., Mittal, M., & Mehta, A. J. (2008). Heavy metal induced oxidative stress & its possible reversal by chelation therapy. The Indian Journal of Medical Research, 128 4, 501–523. https://api.semanticscholar.org/CorpusID:18979683

Ganesan, S. (2020). Surface plasmon resonance based biosensor applied to phytosanitary domain.

Hottin, J., Moreau, J., Bellemain, A., & Canva, M. (2012). Biochip data normalization using multifunctional probes. The Analyst, 137(13), 3119. https://doi.org/10.1039/c2an35120j

Hottin, J., Wijaya, E., Hay, L., Maricot, S., Bouazaoui, M., & Vilcot, J.-P. (2013). Comparison of Gold and Silver/Gold Bimetallic Surface for Highly Sensitive Near-infrared SPR Sensor at 1550 nm. Plasmonics, 8(2), 619–624. https://doi.org/10.1007/s11468-012-9446-1

Kumar, S., Singh, R., Wang, Z., Li, M., Liu, X., Zhang, W., Zhang, B., & Li, G. (2023). (Invited) Advances in 2D nanomaterials-assisted plasmonics optical fiber sensors for biomolecules detection. Results in Optics, 10, 100342. https://doi.org/10.1016/j.rio.2022.100342

Muhamad Allan Serunting, Okky Fajar Tri Maryana, Erga Syafitri, Solina Balqis, & Elsa Windiastuti. (2021). Green Synthesis Silver Nanoparticles (AgNPs) Using Lamtoro Pods Extract (Leucaena leucocephala) and Their Potential for Mercury Ion Detection. Evergreen, 8(1), 63–68. https://doi.org/10.5109/4372261

Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy Metal Toxicity and the Environment (pp. 133–164). https://doi.org/10.1007/978-3-7643-8340-4_6

Xiong, M., Teng, C., Chen, M., Cheng, Y., Deng, S., Li, F., Deng, H., Liu, H., & Yuan, L. (2022). Simulation Study of High Sensitivity Fiber SPR Temperature Sensor with Liquid Filling. Sensors, 22(15), 5713. https://doi.org/10.3390/s22155713

Xu, Y., Ang, Y., Wu, L., & Ang, L. (2019). High Sensitivity Surface Plasmon Resonance Sensor Based on Two-Dimensional MXene and Transition Metal Dichalcogenide: A Theoretical Study. Nanomaterials, 9(2), 165. https://doi.org/10.3390/nano9020165

Published
2024-07-29
Section
Artikel Penelitian