Analisis Pengaruh Variasi Fiber Doped Amplifier dan Panjang Gelombang Laser terhadap Optical Power pada Perancangan Sistem FMCW LiDAR

Analysis of the Effect of Variations in Doped Fiber Amplifier and Laser Wavelength on Optical Power in FMCW LiDAR System Design

  • Riski Ramadani Universitas Negeri Surabaya
  • Meta Yantidewi Universitas Negeri Surabaya
  • Rohim Aminullah Firdaus Universitas Negeri Surabaya
  • Afiyah Nikmah Universitas Negeri Surabaya
Keywords: Optical Power, FMCW LiDAR, Fiber Doped Amplifier, Panjang Gelombang Laser

Abstract

Frequency Modulated Continuous Wave (FMCW) LiDAR merupakan teknologi pendeteksian objek dengan teknik memodulasi frekuensi sinar laser secara kontinu. FMCW LiDAR memiliki kelebihan dalam mendeteksi objek karena dapat menghasilkan pendeteksian objek secara akurat. Salah satu paramater yang berperan dalam pendeteksian sistem ini adalah optical power. Namun optical power dapat berkurang karena ketidaksesauian kombinasi fiber doped amplifier dengan panjang gelombang laser sehingga pada penelitian ini dilakukan pengukuran optical power secara simulasi terhadap berbagai jenis fiber doped amplifier dan panjang gelombang laser. Hasil penelitian menunjukan bahwa jenis Holmium Doped Fiber Amplifier (HDFA) mengeluarkan optical power yang lebih besar dibandingkan jenis fiber doped amplifier lainnya, yakni sebesar 20,02 mW. Selain itu, panjang gelombang 1550 nm menghasilkan keluaran optical power yang optimal diberbagai jenis fiber doped amplifier. Pada penelitian ini semua jenis fiber doped amplifier dan panjang gelombang laser menghasilkan frekuensi beat sebesar 20 MHz dan objek terdeteksi pada jarak 100 meter.

References

Adams, M. D. (2000). Lidar design, use, and calibration concepts for correct environmental detection. IEEE Transactions on Robotics and Automation, 16(6), 753–761. https://doi.org/10.1109/70.897786

Ahmad, Z., Liao, Y.-M., Kuo, S.-I., Chang, Y.-C., Chao, R.-L., Naseem, Lee, Y.-S., Hung, Y.-J., Chen, H.-M., Chen, J., Guo, J.-I., & Shi, J.-W. (2021). High-Power and High-Responsivity Avalanche Photodiodes for Self-Heterodyne FMCW Lidar System Applications. IEEE Access, 9, 85661–85671. https://doi.org/10.1109/ACCESS.2021.3089082

Alharbi, A. G., Kanwal, F., Ghafoor, S., Habib, N., Kanwal, B., Atieh, A., Kousar, T., & Mirza, J. (2022). Performance Optimization of Holmium Doped Fiber Amplifiers for Optical Communication Applications in 2–2.15 ?m Wavelength Range. Photonics, 9(4), 245. https://doi.org/10.3390/photonics9040245

Bagheri, M., Frez, C., Kelly, B., Gupta, J. A., & Forouhar, S. (2013). High output power, fibre?coupled distributed feedback lasers operating near 2.05 ?m wavelength range. Electronics Letters, 49(24), 1552–1553. https://doi.org/10.1049/el.2013.2503

Bobkov, K. K., Mikhailov, E. K., Zaushitsyna, T. S., Rybaltovsky, A. A., Aleshkina, S. S., Melkumov, M. A., Bubnov, M. M., Lipatov, D. S., Yashkov, M. V., Abramov, A. N., Umnikov, A. A., Guryanov, A. N., & Likhachev, M. E. (2022). Properties of Silica Based Optical Fibers Doped With an Ultra-High Ytterbium Concentration. Journal of Lightwave Technology, 40(18), 6230–6239. https://doi.org/10.1109/JLT.2022.3191862

Bo-Hun Choi, Hyo-Hoon Park, & Moo-Jung Chu. (2003). New pump wavelength of 1540-nm band for long-wavelength-band erbium-doped fiber amplifier (l-band edfa). IEEE Journal of Quantum Electronics, 39(10), 1272–1280. https://doi.org/10.1109/JQE.2003.817582

Chen, J.-D., Wu, K.-W., Ho, H.-L., Lee, C.-T., & Lin, F.-Y. (2022). 3-D Multi-Input Multi-Output (MIMO) Pulsed Chaos Lidar Based on Time-Division Multiplexing. IEEE Journal of Selected Topics in Quantum Electronics, 28(5: Lidars and Photonic Radars), 1–9. https://doi.org/10.1109/JSTQE.2022.3150791

Choquette, K. D., Chen, C., & Plant, D. V. (2010). High speed modulation of coupled cavity VCSELs. Asia Communications and Photonics Conference and Exhibition, 108–109. https://doi.org/10.1109/ACP.2010.5682810

Donda, A. (2017). Don’t Turn a Blind Eye to Safety. Journal of System Safety, 53(3), 30–40. https://doi.org/10.56094/jss.v53i3.109

Flores-Fuentes, W., Alba-Corpus, I. Y., Sergiyenko, O., & Rodríguez-Quiñonez, J. C. (2022). A structural health monitoring method proposal based on optical scanning and computational models. International Journal of Distributed Sensor Networks, 18(8), 155013292211126. https://doi.org/10.1177/15501329221112606

G. Alharbi, A., Mirza, J., Raza, M., & Ghafoor, S. (2022). Performance Enhancement of Praseodymium Doped Fiber Amplifiers. Computers, Materials & Continua, 73(3), 5411–5422. https://doi.org/10.32604/cmc.2022.029317

Gariepy, G., Tonolini, F., Warburton, R., Chan, S., Henderson, R., Leach, J., & Faccio, D. (2016). Detection and tracking of moving objects hidden from view. Imaging and Applied Optics 2016, CTh4B.3. https://doi.org/10.1364/COSI.2016.CTh4B.3

Gu, Y. Y., Fu, Y. M., Lu, H., & Cui, Y. (2019). Study on Energy Level and Spectral Characteristics of High Power Yb Doped Fiber Laser. Applied Mechanics and Materials, 893, 57–61. https://doi.org/10.4028/www.scientific.net/AMM.893.57

Hong, D.-B., & Yang, C.-S. (2013). Algorithm Implementation for Detection and Tracking of Ships Using FMCW Radar. Journal of the Korean Society for Marine Environment & Energy, 16(1), 1–8. https://doi.org/10.7846/JKOSMEE.2013.16.1.1

Kim, C., Jung, Y., & Lee, S. (2020). FMCW LiDAR System to Reduce Hardware Complexity and Post-Processing Techniques to Improve Distance Resolution. Sensors, 20(22), 6676. https://doi.org/10.3390/s20226676

Liang, X., Huang, Z., Lu, L., Tao, Z., Yang, B., & Li, Y. (2020). Deep Learning Method on Target Echo Signal Recognition for Obscurant Penetrating Lidar Detection in Degraded Visual Environments. Sensors, 20(12), 3424. https://doi.org/10.3390/s20123424

Liu, Y., Wu, K., Li, N., Lan, L., Yoo, S., Wu, X., Shum, P. P., Zeng, S., & Tan, X. (2013). Regenerative Er-doped Fiber Amplifier System for High-repetition-rate Optical Pulses. Journal of the Optical Society of Korea, 17(5), 357–361. https://doi.org/10.3807/JOSK.2013.17.5.357

Naim, N. F., Sudin, S. N. M., Sarnin, S. S., Ya’acob, N., & Supian, L. S. (2020). Design of fiber bragg grating (FBG) temperature sensor based on optical frequency domain reflectometer (OFDR). International Journal of Electrical and Computer Engineering (IJECE), 10(3), 3158. https://doi.org/10.11591/ijece.v10i3.pp3158-3165

Nanda, K., Kundu, R. S., Punia, R., Mohan, D., & Kishore, N. (2020). Resonant and Non-resonant Nonlinear Optical Properties of Er3+ modified BaO-ZnO-B2O3 Glasses at 532 and 1550 nm. Journal of Non-Crystalline Solids, 541, 120155. https://doi.org/10.1016/j.jnoncrysol.2020.120155

Pokorný, J., Aubrecht, J., & Peterka, P. (2022). Broadband fiber-optic thulium-doped amplifier for wavelengths beyond the L-band. In C.-A. Bunge, K. Kalli, & P. Peterka (Eds.), Micro-Structured and Specialty Optical Fibres VII (p. 12). SPIE. https://doi.org/10.1117/12.2622428

Qian, R., Zhou, K. C., Zhang, J., Viehland, C., Dhalla, A.-H., & Izatt, J. A. (2022). Video-rate high-precision time-frequency multiplexed 3D coherent ranging. Nature Communications, 13(1), 1476. https://doi.org/10.1038/s41467-022-29177-9

Qingchun, H., Kaida, C., & Jing, X. (2021). Modeling of detection techniques for FMCW lidar using OptiSystem. Journal of Physics: Conference Series, 1939(1), 012066. https://doi.org/10.1088/1742-6596/1939/1/012066

Rahmatulloh, M. A., Hanto, D., Yantidewi, M., Agitta Rianaris, & R.A. Firdaus. (2023). Analisis Redaman Fiber Optik dengan Menggunakan Pemodelan Software Optisystem. Jurnal Kolaboratif Sains, 6(7), 630–639. https://doi.org/10.56338/jks.v6i7.3795

Ramadani, R., Khairunisa, S. A., & Khoiro, M. (2023). Characteristics Analysis of Hybrid Optical Amplifier with Doped Fiber Variations for Fiber Optic Communications Network. Journal of Physics: Conference Series, 2623(1), 012022. https://doi.org/10.1088/1742-6596/2623/1/012022

Rodrigo, P. J., Iversen, T. F. Q., Hu, Q., & Pedersen, C. (2014). Diode laser lidar wind velocity sensor using a liquid-crystal retarder for non-mechanical beam-steering. Optics Express, 22(22), 26674. https://doi.org/10.1364/OE.22.026674

Schmidt, E. L., Ou, Z., Ximendes, E., Cui, H., Keck, C. H. C., Jaque, D., & Hong, G. (2024). Near-infrared II fluorescence imaging. Nature Reviews Methods Primers, 4(1), 23. https://doi.org/10.1038/s43586-024-00301-x

Shao, B., Tan, Q., Zhang, W., Liang, D., Deng, X., Zhang, B., & Zhang, W. (2022). Chip-based microwave-photonic LiDAR for high-speed ranging and velocimetry. In G.-D. Peng, M. Yang, & X. Fan (Eds.), Advanced Sensor Systems and Applications XII (p. 8). SPIE. https://doi.org/10.1117/12.2638112

Szafarczyk, A., & To?, C. (2022). The Use of Green Laser in LiDAR Bathymetry: State of the Art and Recent Advancements. Sensors, 23(1), 292. https://doi.org/10.3390/s23010292

Tomaszewska-Rolla, D., Lindberg, R., Pasiskevicius, V., Laurell, F., & Sobo?, G. (2022). A comparative study of an Yb-doped fiber gain-managed nonlinear amplifier seeded by femtosecond fiber lasers. Scientific Reports, 12(1), 404. https://doi.org/10.1038/s41598-021-04420-3

Tompkins, S. A., Driver, S. P., Robotham, A. S. G., Windhorst, R. A., Lagos, C. del P., Vernstrom, T., & Hopkins, A. M. (2023). The cosmic radio background from 150?MHz to 8.4?GHz and its division into AGN and star-forming galaxy flux. Monthly Notices of the Royal Astronomical Society, 521(1), 332–353. https://doi.org/10.1093/mnras/stad116

Wang, W. C., Yuan, J., Li, L. X., Chen, D. D., Qian, Q., & Zhang, Q. Y. (2015). Broadband 27 ?m amplified spontaneous emission of Er^3+ doped tellurite fibers for mid-infrared laser applications. Optical Materials Express, 5(12), 2964. https://doi.org/10.1364/OME.5.002964

Wang, Y., Wang, S., Halder, A., & Sahu, J. (2023). (INVITED) Bi-doped optical fibers and fiber amplifiers. Optical Materials: X, 17, 100219. https://doi.org/10.1016/j.omx.2022.100219

Warburton, R., Aniculaesei, C., Clerici, M., Altmann, Y., Gariepy, G., McCracken, R., Reid, D., McLaughlin, S., Petrovich, M., Hayes, J., Henderson, R., Faccio, D., & Leach, J. (2017). Observation of laser pulse propagation in optical fibers with a SPAD camera. Scientific Reports, 7(1), 43302. https://doi.org/10.1038/srep43302

Webster, S., McDonald, F. C., Villanger, A., Soileau, M. J., Van Stryland, E. W., Hagan, D. J., McIntosh, B., Torruellas, W., Farroni, J., & Tankala, K. (2005). Optical damage measurements for high peak power ytterbium doped fiber amplifiers (G. J. Exarhos, A. H. Guenther, K. L. Lewis, D. Ristau, M. J. Soileau, & C. J. Stolz, Eds.; p. 599115). https://doi.org/10.1117/12.639287

Yorks, J. E., Selmer, P. A., Kupchock, A., Nowottnick, E. P., Christian, K. E., Rusinek, D., Dacic, N., & McGill, M. J. (2021). Aerosol and Cloud Detection Using Machine Learning Algorithms and Space-Based Lidar Data. Atmosphere, 12(5), 606. https://doi.org/10.3390/atmos12050606

Zhang, X., Pouls, J., & Wu, M. C. (2019). Laser frequency sweep linearization by iterative learning pre-distortion for FMCW LiDAR. Optics Express, 27(7), 9965. https://doi.org/10.1364/OE.27.009965

Zhao, J., Xu, H., Zhang, Y., Shankar, V., & Liu, H. (2022). Automatic Identification of Vehicle Partial Occlusion in Data Collected by Roadside LiDAR Sensors. Transportation Research Record: Journal of the Transportation Research Board, 2676(5), 708–718. https://doi.org/10.1177/03611981211069347

Published
2024-05-07
Section
Artikel Penelitian