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Introduction: Several studies on tuberculosis (TB) using spatial and time clustering analyses have 

been conducted in Indonesia, however none have specifically focused on regions characterized by 

diverse topography. This study aimed to identify geospatial clusters of TB cases in West Sulawesi 

Province, Indonesia, an area known for its topographic variability.  

Methods: An ecological study design was employed. TB case data, including bacteriologically 

confirmed and clinically diagnosed cases, were obtained from the Tuberculosis Information System 

(Sistem Informasi Tuberkulosis, SITB) of the West Sulawesi Provincial Health Office, covering the 

period from January 1, 2020, to December 31, 2023. Spatial visualization was performed using 

QGIS version 3.40.0. Cluster detection and spatial pattern analysis were conducted using SaTScan 

version 10.2.5. 

Results: TB cases in West Sulawesi formed clusters. A total of 17 clusters were identified—4 

primary (most likely) clusters and 13 secondary clusters. In 2020, the primary cluster was located 

in Bambang Village, Bambang Subdistrict. In 2021, the primary cluster was in Lambanan Village, 

Mamasa Subdistrict. In 2022, the primary cluster was in Ulumambi Barat Village, Bambang 

Subdistrict, and in 2023, the primary cluster was again in Lambanan Village, Mamasa Subdistrict. 

Conclusion: This study found that the most likely TB clusters from 2020 to 2023 were consistently 

located in the eastern part of West Sulawesi Province, specifically in Mamasa Regency, an area 

characterized by mountainous terrain. This suggests that various environmental, social, and 

economic factors unique to mountain communities may influence TB transmission dynamics. The 

findings highlight the need for geographically tailored intervention strategies, including mobile TB 

services, community-based education, enhanced surveillance systems, the establishment of local TB 

support networks, and improved healthcare infrastructure adapted to mountainous areas. Future 

research should consider integrating genotypic, molecular, and geospatial approaches to advance 

global TB control efforts. 
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INTRODUCTION  
World Health Organization (WHO) has identified Tuberculosis (TB) as a critical issue, particularly within 

the context of the Sustainable Development Goals (SDGs), which aim to end the TB epidemic by 2030(1). The Global 

TB Report 2024 stated that 8.2 million new TB cases were identified in 2023, an increase from 7.5 million cases in 

2022 and 7.1 million cases in 2021. Indonesia remains the second-largest contributor to TB cases globally, following 

India. The WHO report also highlights that the largest contributors to the global increase in TB cases between 2020 

and 2023 were Indonesia, the Philippines, and Myanmar. The global TB incidence rate is estimated to have risen by 

approximately 4.6 percent during this period (2).  
More than 724,000 new TB cases were identified in Indonesia in 2022, with the number rising to 809,000 

cases in 2023. This figure is significantly higher compared to the pre-pandemic years, when annual case detection 

averaged below 600,000 (3). The Ministry of Health has set a target for West Sulawesi Province to detect 

approximately 5,060 TB cases in 2024, with the aim of reducing the incidence rate by 80% toward TB elimination 

by 2030. Although the TB case detection rate has steadily increased over the past four years, from 51% in 2022 to 

72% in 2023, it still falls short of the established target (4). Treatment adherence remains a significant challenge in 

achieving TB elimination goals (5). Therefore, strong commitment and tangible actions from all stakeholders are 

essential to accelerate TB control efforts, ensuring Indonesia meets its 2030 TB elimination target (6).  

One approach to accelerating TB control efforts is by understanding both the spatial and temporal patterns of 

TB transmission (7,8). The combination of spatial analysis and time clustering provides in-depth, evidence-based 

data for policymakers to design more effective and targeted interventions (9). Results from these analyses can predict 

potential future hotspots(7), enabling earlier preventive measures to minimize disease transmission more effectively. 

Understanding the spatial and temporal distribution of TB is essential for planning focused control activities, 

particularly in resource-limited regions (10). 

Although several studies on TB using spatial analysis and time clustering have been conducted in Indonesia 

(7,8,19–25,11–18) ,there is a lack of research specifically examining TB spatial distribution in regions with diverse 

topographies, such as West Sulawesi Province. Topography plays a critical role in the epidemiology of infectious 

diseases like TB. Geographic variations, especially between mountainous areas and lowlands, significantly influence 

TB distribution, transmission, and control. The physical condition of houses in mountainous areas, particularly 

ventilation, often does not meet health standards (26), additionally, the humidity and temperature in mountainous 

regions create a favorable environment for TB-causing bacteria (27). This situation is further exacerbated by limited 

access to healthcare facilities, including long distances, poor road conditions, and transportation difficulties, which 

hinder timely access to treatment in these areas (28). 

Geospatial analysis allows for the identification of most likely clusters—areas with statistically significant 

concentrations of TB cases. Spatial analysis aimed at identifying high TB burden areas based on influencing factors 

can enhance surveillance efforts (29). Clustering knowledge is particularly beneficial for TB control, as it provides 

information on high-risk populations and areas (30). Identifying clusters and high-risk regions supports evidence-

based decision-making in TB control efforts. This study also serves as a scientific foundation for designing more 

effective interventions in areas with limited healthcare access. Consequently, this research represents a crucial step 

in strengthening TB control strategies in Indonesia. The aim of this study is to identify geospatial clusters of TB cases 

in West Sulawesi Province, Indonesia, which features diverse topography. 

 

METHOD  
Research Type 

This study used a quantitative approach with an ecological research design.  

 

Population and Sample/Informants 

The total population of the province is 1,481,077, with a population density of 89 individuals per km². The 

study included all bacteriologically confirmed and clinically diagnosed tuberculosis (TB) cases that received 

treatment between January 1, 2020, and December 31, 2023. 
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Research Location 

The research was conducted in West Sulawesi Province, Indonesia, a region characterized by diverse 

topography, including lowland, highland, and mountainous areas. This geographic variability provides a unique 

context for exploring the relationship between topography and the spatial clustering of TB cases. Geographically, 

West Sulawesi lies between 0° 12' - 3° 38' South Latitude and 118° 43' 15" – 119° 54' 3" East Longitude (31). 

 

Figure 1. Location of the Study Area 

 

 

Instrumentation or Tools 

Sub-district population data were obtained from the Central Bureau of Statistics of each regency within West 

Sulawesi Province. Geographic coordinates (latitude and longitude) of village offices were collected via Google 

Maps. 

 

Data Collection Procedures 

TB case data were extracted from the Tuberculosis Information System (SITB), a digital surveillance 

platform managed by the West Sulawesi Provincial Health Office for recording and reporting TB cases (32). The 

dataset comprised aggregated TB case counts at the village or urban ward level.  

 

Potential Bias 

TB case data from the SITB include only diagnosed cases under treatment; latent infections and undiagnosed 

or unreported cases (e.g., those not accessing health services) were not captured, potentially leading to 

underestimation of the true disease burden. 

 

Data Analysis 

The spatial distribution of TB cases in West Sulawesi Province was analyzed using SaTScan v10.2.5 software 

(33). The analysis covered the period from January 1, 2020, to December 31, 2023, applied a Retrospective Purely 

Spatial and Space-Time Analysis using a discrete Poisson probability model. The temporal unit was defined monthly. 

The maximum spatial cluster size was set at 25% of the population at risk. Clusters with the highest log-likelihood 

ratio (LLR) were identified as primary (most likely) clusters, while others were classified as secondary clusters (34). 

Spatial visualization was performed using QGIS version 3.40.0 (35). Descriptive statistics were also used to 

summarize the trends of TB cases and the TB incidence rate in West Sulawesi Province from 2020 to 2023. 

 

Ethical Approval 

This study received ethical approval from The Research Bioethics Committee of Medicine/Health, Faculty 

of Medicine, Sultan Agung Islamic University, Semarang (Approval Number: 100/III/2024/Komisi Bioetik). The 

confidentiality of all data was strictly maintained throughout the research process. 
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RESULTS  
Based on Figure 2, the trend of TB cases in West Sulawesi Province from 2020 to 2023 shows a steady 

increase. The highest number of cases was recorded in 2023, with 3,110 cases, while the lowest was in 2020, with 

1,895 cases. The total number of TB cases over the four-year period amounted to 9,536 cases.  

 

Figure 2. Trend of TB Cases in West Sulawesi Province (2020-2023) 

 

Figure 3. TB Incidence Rate in West Sulawesi Province (2020-2023) 

 

According to Figure 3, the annual TB incidence rate during the four-year study period ranged from 3.43 to 

26.08 per 10,000 population, with an average annual incidence rate of 7.34 per 10,000 population. The lowest 

incidence rate was recorded in Pasangkayu Regency in 2021, while the highest was observed in Mamuju Regency in 

2023. 
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Table 1. Results of the TB Case Clustering Analysis for 2020-2023 with 25% Population (Purely Spatial Analysis) 

Year Cluster 

type 

Geographical 

coordinates 

Radius 

(km) 

Cases 

(no.) 

Expected 

cases (n0.) 

People 

at risk 

(n0.) 

RR LLR P* 

2020 

Most 

Likely 

cluster 

-2.953518 S 

119.198474 E 
42.25 289 123.31 29123 2.59 88.45 <0.001 

1st 

secondary 

cluster 

-3.382708 S 

118.881657 E 
19.56 204 113.49 26804 1.89 31.45 <0.001 

2nd 

secondary 

cluster 

-2.395703 S 

119.676162 E 
45 43 18.77 4434 2.32 11.57 0.002 

2021 

Most 

Likely 

cluster 

-2.911781 S, 

119.421645 E 

54.90 306 157.01 35882 2.11 61.07 <0.001 

1st 

secondary 

cluster 

-3.327612 S, 

118.843327 E 

26.18 273 161.66 36944 1.79 34.97 <0.001 

2nd 

secondary 

cluster 

-0.953045 S, 

119.509177 E 

6.48 39 14.41 3293 2.74 14.38 <0.001 

3rd 

secondary 

cluster 

-3.491559 S, 

119.083763 E 

0 7 0.46 106 15.21 12.5 <0.001 

4th 

secondary 

cluster 

-2.853993 S, 

118.798627 E 

20.36 123 83.01 18970 1.51 8.78 0.02 

5th 

secondary 

cluster 

-2.234691 S, 

119.386031 E 

13.18 48 25.28 5776 1.92 8.19 0.039 

2022 

Most 

Likely 

cluster 

-2.916930 S 

119.261876 E 42.50 242 111.52 24844 2.30 60.74 <0.001 

1st 

secondary 

cluster 

-3.382708 S 

118.881657 E 18.48 206 119.10 26532 1.80 27.62 <0.001 

2nd 

secondary 

cluster 

-3.085548 S, 

118.836603 E 13.53 66 35.76 7967 1.87 10.39 0.011 

3rd 

secondary 

cluster 

-2.264229 S 

119.296965 E 18.41 141 98.68 21982 1.46 8.39 0.044 

2023 

Most 

Likely 

cluster 

-2.911781 S 

119.421645 E 
49.26 321 145.85 30532 2.34 83.35 <0.001 

1st 

secondary 

cluster 

-3.315823 S 

118.849339 E 
27.18 333 216.15 45247 1.61 29.45 <0.001 

2nd 

secondary 

cluster 

-2.288651 S 

119.301396 E 
17.64 159 109.27 22875 1.48 10.32 0.017 

3rd 

secondary 

cluster 

-2.853993 S 

118.798627 E 
20.36 199 143.34 30005 1.41 10.16 0.021 

*Statistically significant at p=0.05 



 

Spatio-Temporal Analysis of Tuberculosis Clusters in a Region of Topographic Diversity: A Case Study from West Sulawesi Province, Indonesia  

Page | 388  

As shown in Table 1, the analysis detected a total of 17 clusters that statistically showed significance, with 

each having one main cluster (most likely cluster) during the four-year period. Additionally, there were 13 potential 

clusters (secondary clusters) detailed as follows: two in 2020, five in 2021, three in 2022, and three in 2023. 

 

Figure 4. TB Clusters Map in West Sulawesi Province for 2020-2023 

 

Based on Figure 4, it can be seen that the most likely TB clusters in West Sulawesi Province from 2020 to 

2023 consistently remained in the same area, specifically in the eastern part of the province, which has a mountainous 

topography. In 2020, the main cluster was located in Bambang Village, Bambang Subdistrict, Mamasa Regency. In 

2021, the main cluster was in Lambanan Village, Mamasa Subdistrict, Mamasa Regency. In 2022, the main cluster 

was in Ulumambi Barat Village, Bambang Subdistrict, Mamasa Regency. In 2023, the main cluster was in Lambanan 

Village, Mamasa Subdistrict, Mamasa Regency. 

 

DISCUSSION 
The number of tuberculosis (TB) cases in West Sulawesi Province from 2020 to 2023 has shown an increasing 

trend each year. This increase not only reflects the recovery of the healthcare system post-COVID-19 pandemic but 

also improvements in the detection and reporting systems, including the provision of laboratories and more adequate 

healthcare facilities. Indonesia's commitment to addressing TB is evident with the highest case notifications in history 

in 2022 and 2023. This is the result of strengthening the national program, focusing on case tracing and more intensive 

case management. 

Geospatial analysis shows that the most likely TB clusters in West Sulawesi Province from 2020 to 2023 

were consistently located in the eastern part of the province, namely Mamasa Regency, which has a mountainous 

topography. Previous research has shown that TB incidence tends to be higher in mountainous areas compared to 

non-mountainous areas (36). This study aligns with the research conducted by Chen, Jinou, et al. (2019), which stated 

that TB clusters were concentrated in the northeastern part of Yunnan, a mountainous region (37). Other studies have 
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also reported the occurrence of TB clusters in mountainous areas (38). This may be linked to various environmental, 

social, and economic factors influencing TB transmission dynamics. 

Based on population density analysis, the most likely TB cluster areas in Mamasa Regency had a low 

population density, which was 86 people/km² in 2020 and increased to 108 people/km² in 2023. Despite the low 

population density, TB clusters can still emerge in small communities with close contact, such as in Mamasa Regency. 

The settlement pattern in highland areas is highly influenced by topography and soil fertility. The settlement pattern 

in highland areas typically spreads along slopes and clusters in areas with fertile and relatively flat land (39). A 

lifestyle with intensive interaction within small communities can increase the risk of TB transmission, even though 

the overall population is not dense. 

The physical condition of homes in mountainous areas, which are mostly traditional houses with poor 

ventilation, contributes to the increased risk of TB transmission through the air (26). Poor ventilation has been proven 

to significantly contribute to TB transmission (40–42). Research has mentioned that humidity impacts TB incidence 

(40,43). The high humidity and low temperatures at night in mountainous areas create an environment that supports 

the survival of Mycobacterium tuberculosis. Humidity affects the human circulatory system, increasing the human 

body's susceptibility to infectious diseases (27). Humid air supports the survival and reproduction of Mycobacterium 

tuberculosis, increasing the risk of TB (44,45). 

Mountainous areas tend to be inhabited by communities with low economic status, inadequate sanitation, and 

overcrowded housing in small communities, which increases vulnerability to TB. There is a high risk for TB in areas 

associated with low socioeconomic conditions (41,46–49), with increased TB incidence in low-income populations 

(50). Overcrowded environments with poor housing conditions significantly contribute to TB transmission (29,40). 

Housing density also contributes to the occurrence and transmission of tuberculosis (41,42,51) 

Socio-cultural factors have a significant influence on community perceptions of TB, contributing to its rapid 

and easy transmission to others (52). The low level of education in mountainous areas affects treatment-seeking 

behavior. Individuals with higher knowledge tend to have a broader perspective on healthcare services(53). 

Additionally, well-educated individuals are more likely to adhere to prescribed TB treatment and complete the full 

course of medication, reducing the risk of transmission and the development of drug resistance (54).   

Furthermore, people in mountainous areas often seek treatment from traditional healers before visiting 

healthcare facilities (55). In some local cultures, TB may be perceived as a highly feared disease or associated with 

negative stigma, which can impact how individuals seek medical care, their participation in prevention programs, and 

their willingness to share information about TB (56). These factors contribute to undetected TB cases, delayed 

diagnosis, and incomplete treatment, allowing TB transmission to persist (57). 

The difficult terrain of mountainous regions also limits access to healthcare facilities, leading to delays in 

diagnosis, treatment, and contact tracing. There are many barriers to accessing TB care, one of which is the difficulty 

in reaching healthcare facilities, especially in mountainous areas (58,59). Barriers to access healthcare centers include 

long distances to the nearest facility, poor road networks, lack of transportation access, and travel costs (28). The 

accumulation of undetected latent cases often develops into active TB, which then becomes a source of new clusters. 

The limited availability of TB testing facilities in this area exacerbates delays in handling, which can increase 

the risk of local transmission. TB service facilities are unevenly distributed, which can heighten the risk of TB 

transmission and treatment costs for patients in rural areas (60). There are no sputum smear microscopy services 

available. The lack of adequate laboratory personnel has been identified as a barrier to the readiness of healthcare 

facilities to offer quality TB services (61). Improving access to TB diagnostic services is crucial to closing the global 

TB detection gap, and the deployment of effective mobile screening units can help achieve this goal (62). 

Public health interventions, particularly for TB, are a complex series of processes, making a combined 

intervention approach essential (63). Integrated prevention interventions for public health workers and professional 

TB centers can reduce delays in TB treatment and expand access to TB treatment facilities (42). A combination of 

genotypic, molecular, and geospatial approaches to examine epidemiologically related cases can enhance TB control 

and significantly contribute to current knowledge (47). Future research should adopt a mixed-methods approach by 

integrating molecular epidemiology to track TB strain variations and gain a deeper understanding of transmission 

dynamics. 

The national TB control program may not yet fully target the needs of mountainous areas such as Mamasa 

Regency, both in terms of the distribution of healthcare workers and the adjustment of intervention methods based 
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on geographic conditions. TB control strategies that could be implemented in mountainous areas such as Mamasa 

Regency require a local-based approach, including: Mobile TB services to expand access to diagnosis and treatment, 

community education on TB prevention and management, enhancing surveillance systems to detect clusters earlier, 

and establishing TB communities as cadres or facilitators to raise awareness and strengthen community commitment 

to TB control. and providing better healthcare infrastructure considering the mountainous terrain. 

 

CONCLUSION 
A total of 17 statistically significant TB clusters were identified during the 2020-2023 period. All of the most 

likely clusters consistently appeared in Mamasa Regency, a region characterized by mountainous topography. The 

spatial patterns identified through SaTScan analysis also showed geographic consistency over time. These findings 

provide critical insights to inform targeted TB control policies, particularly in regions with diverse and challenging 

terrains. The study highlights the importance of strengthening surveillance systems, enhancing diagnostic capacity, 

and improving access to healthcare services in high-risk, mountainous areas. Furthermore, the results underscore the 

urgency of developing adaptive and context-specific intervention strategies to reduce TB incidence in geographically 

vulnerable regions. This study contributes a strong scientific foundation to support and accelerate global TB 

elimination efforts. 
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