

Research Articles**Open Access**

Sociodemographic and Health Insurance Ownership Related to Tuberculosis in Elderly: An Analysis of Indonesia Health Survey

Lili Amaliah^{1,2*}, Oktia Woro Kasmini Handayani³, Intan Zainafree⁴

¹Faculty of Medicine, Universitas Negeri Semarang, Jawa Tengah, Indonesia

²Sekolah Tinggi Ilmu Kesehatan Cirebon, Jawa Barat, Indonesia

³Faculty of Medicine, Universitas Negeri Semarang, Jawa Tengah, Indonesia

⁴Faculty of Medicine, Universitas Negeri Semarang, Jawa Tengah, Indonesia

*Corresponding Author: E-mail: liliamalia9@yahoo.com

ARTICLE INFO

Manuscript Received: 15 Oct, 2025

Revised: 08 Dec, 2025

Accepted: 22 Dec, 2025

Date of Publication: 02 Feb, 2026

Volume: 9

Issue: 2

DOI: [10.56338/mppki.v9i2.8893](https://doi.org/10.56338/mppki.v9i2.8893)

KEYWORDS

Tuberculosis;
Elderly;
Socio-demographic Factors;
Health Insurance;
Indonesia

ABSTRACT

Introduction: Tuberculosis (TB) continues to be a significant public health issue globally, with Indonesia being one of the nation's experiencing the highest TB burden in the world. The purpose of this study is to analyze the sociodemographic factors and health insurance ownership associated with the incidence of tuberculosis (TB) among the elderly in Indonesia.

Methods: This study used secondary data from the 2023 Indonesia Health Survey (SKI), focusing on elderly individuals (≥ 60 years). A total of 97,339 participants were included after applying inclusion criteria. The dependent variable was the self-reported diagnosis of tuberculosis (TB), and independent variables included age, sex, marital status, education, occupation, health insurance, place of residence, and family status. Data were analyzed with univariate, bivariate (Chi-square), and multivariate (binary logistic regression) analyses.

Results: The study found that 0.57% of older adults self-reported the tuberculosis diagnosis. The significant associations between tuberculosis diagnosis and variables such as sex, marital status, education, occupation, health insurance, place of residence, and family status, with women, higher education levels, certain occupations, health insurance coverage, urban living, and being head of the household being less likely to report TB, while age showed no significant association. The binary logistic regression revealed that factors such as sex, education, occupation, health insurance, and family status significantly influence the likelihood of TB diagnosis, with females, higher education levels, certain occupations, no health insurance, and being a spouse showing reduced odds of being diagnosed with TB.

Conclusion: This study found that tuberculosis (TB) among older persons was significantly associated with several sociodemographic factors, including sex, education level, occupation, health insurance ownership, and family status. Female older adults and those with higher education levels were less likely to be diagnosed with TB. Similarly, those who were employed, especially as private employees, entrepreneurs, or farmers, and those without health insurance had lower odds of TB. It is suggested to improve TB prevention and treatment strategies for older adults, with a particular emphasis on gender, education, employment, and health insurance access.

Publisher: Fakultas Kesehatan Masyarakat Universitas Muhammadiyah Palu

INTRODUCTION

Tuberculosis (TB) remains a major public health challenge globally, including in Indonesia, which ranks among the countries with the highest TB burden worldwide (1–3). Indonesia is among the top three countries with the highest number of TB cases, following India and China (4). Despite longstanding national TB control programs, the prevalence of the disease remains high, particularly among vulnerable groups such as the elderly (5).

The elderly population (aged ≥ 60 years) is at higher risk for TB due to age-related decline in immune function, the presence of comorbidities such as diabetes mellitus, and limited access to healthcare services (6,7). Additionally, TB symptoms in older adults are often atypical and may be masked by other chronic conditions, leading to delays in diagnosis and treatment (8,9). Therefore, understanding the factors contributing to TB incidence in the elderly is crucial for designing targeted and effective public health interventions (10).

Sociodemographic factors such as educational level, socioeconomic status, gender, and place of residence have been shown to influence TB occurrence across different age groups (11,12). Older adults with lower education or those living in remote or rural areas tend to have limited knowledge about TB and face barriers in accessing healthcare services, which increases their risk of exposure and delays in treatment (13). These factors also influence health-seeking behavior and treatment adherence, which are critical in TB control (14).

Health insurance ownership plays a vital role in determining access to and continuity of healthcare. In Indonesia, the National Health Insurance system (Jaminan Kesehatan Nasional/JKN) aims to improve healthcare coverage, particularly for vulnerable populations such as the elderly (15). However, not all elderly individuals are enrolled in or actively utilize JKN services. Research examining the role of health insurance ownership in reducing TB risk among the elderly remains limited, highlighting the need for further investigation to inform evidence-based policy development (16).

Although numerous studies have identified general risk factors for TB, few have specifically explored the relationship between sociodemographic characteristics and health insurance ownership in relation to TB among the elderly in Indonesia. Existing studies tend to focus on younger, working-age populations or emphasize clinical aspects, often neglecting the broader socioeconomic context that may influence vulnerability and healthcare access. This research gap underscores the importance of conducting a nationally representative analysis to gain a comprehensive understanding and support the formulation of equitable and effective TB control policies for the elderly population. The purpose of this study is to analyze the sociodemographic factors and health insurance ownership associated with the incidence of tuberculosis (TB) among the elderly in Indonesia.

METHOD

Study Design

This study utilized secondary data from the 2023 Indonesia Health Survey (*Survei Kesehatan Indonesia/SKI*), a nationally representative cross-sectional survey designed to capture health status, behaviors, and socio-demographic conditions across Indonesia at a single point in time. The cross-sectional design allows for the examination of disease prevalence and associated factors across diverse geographic and socio-economic groups simultaneously, providing essential input for national and regional health policy development.

Setting

Indonesian Health Survey data were collected through structured household interviews conducted by trained enumerators from August to the first week of October 2023. Respondents were selected through multi-stage stratified random sampling, ensuring national representativeness that includes both urban and rural populations.

Sample/Participants

From the total 1,191,692 individuals interviewed in the 2023 survey, this study specifically focused on older adults aged 60 years and above. After applying the inclusion criteria—respondents aged ≥ 60 years and having complete data on all relevant variables—a total of 97,339 elderly individuals were included in the analysis. Respondents with missing data on key variables were excluded.

Instruments

The instrument used in this study is based on secondary data obtained from the 2023 Indonesian Health Survey (SKI), which includes information on health status, sociodemographic factors, and socioeconomic conditions of the respondents. The dependent variable in this study is the self-reported tuberculosis (TB) diagnosis by healthcare provider with the question "*In the past 12 months, has [NAME] been diagnosed with pulmonary tuberculosis (TB) / 'lung spots' by a doctor?*". This variable is used to identify the prevalence of TB among the elderly in Indonesia. The independent variables analyzed include age group, sex, marital status, educational level, occupation, health insurance ownership, place of residence, and family status. Age groups are divided into three categories: elderly (60-74 years), old age (75-90 years), and very old (over 90 years), to examine differences in TB prevalence across these subgroups. Sex is categorized into male and female to assess whether there are gender differences in TB prevalence. Marital status is categorized into never married, married, divorced (living), and divorced (death), to explore the relationship between marital status and TB occurrence. Educational level is divided into five categories: no education, primary education, secondary education, higher education, and university, to evaluate whether educational level influences TB prevalence. Occupation is categorized into formal sector (civil servants and private employees) and informal sector (self-employed, farmers, fishermen, drivers, etc.), to assess the relationship between occupation and TB occurrence. The health insurance variable is categorized into BPJS PBI/Jamkesda, BPJS non-PBI, private insurance, or no insurance, to investigate how insurance affects TB diagnosis in the elderly. In addition, place of residence is divided into urban and rural areas to examine the differences in TB prevalence based on access to healthcare services, while family status is categorized into head of household, spouse, children/in-laws, and other relatives, to assess the influence of family roles on TB diagnosis. All these variables are measured based on data from the 2023 Indonesian Health Survey, categorized for the analysis of sociodemographic factors that influence TB occurrence in the elderly.

Data Analysis

The data were analyzed using STATA version 18. Univariate analysis was performed to describe the frequency and percentage of each variable. Bivariate analysis using the Chi-square test was conducted to identify associations between independent variables and TB diagnosis. Finally, multivariate analysis was performed using binary logistic regression to determine the adjusted effect of each predictor on the likelihood of having TB. The level of significance was set at $p < 0.05$.

Ethical Consideration

The original survey protocol was approved by the Ethics Committee of the Ministry of Health, Republic of Indonesia. In addition, the use of the secondary dataset in this study was granted permission by the Center for Data and Information Technology, Ministry of Health of Indonesia, under the data usage approval letter No. FRM/SMKI-PUSDATIN/70/0385/2025.

RESULTS

The results in this study consists of univariate, bivariate, and multivariate analysis. The univariate analysis results are described in the Table 1 below. It revealed that there was 0.57 % of the older persons in the study have diagnosed TB. According to the age group, the majority of them were in aged elderly (60 to 74 years old) which was 85.07%, following by old age for 75 to 90 (14.26%), and very old older than 90 (0.67%). The proportion between male and female is not huge different which female were 51.04%. The higher percentage of marital status were married (68.37%). The educational level revealed that the higher percentage were those finished primary school (42.00%). In terms of occupation, the higher percentage was showed for farmer (34.71%), followed by unemployed (31.84%). Health insurance ownership found more than half of older persons joined the survey were holding BPJS PBI (*Badan Penyelenggara Jaminan Kesehatan Penerima Bantuan Iuran / Health Insurance Administering Body for Contribution Assistance Recipients*) which 55.82%. More than half of them were residence in urban area (54.11%) and the head of household (64.81%).

Table 1. The general characteristics of the older persons

Variables = 97,339	Frequency	Percentage
Have diagnosed TB		
No	96,782	99.43
Yes	557	0.57
Age group		
Elderly	82,808	85.07
Old age	13,876	14.26
Very old	655	0.67
Sex		
Male	47,662	48.96
Female	49,677	51.04
Marital status		
Unmarried	1,222	1.26
Married	66,554	68.37
Divorced (life)	2,096	2.15
Divorced (death)	27,467	28.22
Educational level		
None	11,722	12.04
Not finished primary school	14,260	14.65
Primary school	40,880	42.00
Secondary higher school	10,431	10.72
High school	13,188	13.55
Diploma	2,961	3.04
University	3,897	4.00
Occupation		
Unemployed	30,991	31.84
Student	338	0.35
Government officer	3,459	3.55
Private employee	1,972	2.03
Entrepreneur	10,589	10.88
Farmer	33,783	34.71
Fisherman	1,358	1.40
Driver, etc	5,011	5.15
Others	9,838	10.11
Health insurance		
BPJS PBI/Jamkesda	54,336	55.82
BPJS non PBI	21,226	21.81
Private insurance	1,577	1.62
None	20,200	20.75
Place of residence		
Urban	52,671	54.11
Rural	44,668	45.89
Status in family		
Head	63,087	64.81
Wife/husband	22,602	23.22
Child/child in law, grand child	10,443	10.73
Driver, housekeeper, other relatives	1,207	1.24

Table 2 below showed the bivariate analysis of correlation between each predictors and TB case among older persons using the Chi-square test. The findings revealed that sex, marital status, educational level, occupation, health insurance, place of residence, and status in family are significantly associated with TB case. However, the variable of age group was not found significantly associated with TB case.

Table 2. Result of chi square analysis each variable with TB diagnosed

Variables = 97,339	Have diagnosed TB		Total	Chi2 and p-value
	No (%)	Yes (%)		
Age group				0.9852
Elderly	99.42	0.58	82,808	
Old age	99.48	0.52	13,876	
Very old	99.54	0.46	655	
Sex				72.6413***
Male	99.22	0.78	47,662	
Female	99.63	0.37	49,677	
Marital status				17.9843***
Unmarried	99.43	0.57	1,222	
Married	99.39	0.61	66,554	
Divorced (life)	98.95	1.05	2,096	
Divorced (death)	99.56	0.44	27,467	
Educational level				28.3225***
None	99	0.67	11,722	
Not finished primary school	99.28	0.72	14,260	
Primary school	99	0.60	40,880	
Secondary higher school	99	0.57	10,431	
High school	100	0.42	13,188	
Diploma	100	0.34	2,961	
University	100	0.15	3,897	
Occupation				33.6996***
Unemployed	99.48	0.52	30,991	
Student	98.82	1.18	338	
Government officer	99.74	0.26	3,459	
Private employee	99.8	0.20	1,972	
Entrepreneur	99.52	0.48	10,589	
Farmer	99.31	0.69	33,783	
Fisherman	98.82	1.18	1,358	
Driver, etc	99.38	0.62	5,011	
Others	99.51	0.49	9,838	
Health insurance				18.818***
BPJS PBI/Jamkesda	99.34	0.66	54,336	
BPJS non PBI	99.51	0.49	21,226	
Private insurance	99.24	0.76	1,577	
None	99.58	0.42	20,200	
Place of residence				9.1115**
Urban	99.49	0.51	52,671	
Rural	99.35	0.65	44,668	
Status in family				36.6011***
Head	99.33	0.67	63,087	
Wife/husband	99.67	0.33	22,602	
Child/child in law, grand child	99.53	0.47	10,443	
Driver, housekeeper, other relatives	99.25	0.75	1,207	

Note: *p-value <0.05, **p-value <0.01, ***p-value <0.001

The findings of binary logistic regression in this study revealed that some variables are significantly had effect on TB case after adjusted with other independent variables. In terms of sex, compared to male elderly, female ones is less likely to be diagnosed TB with 55% lower odds. The educational level was found significant for some points, compared to those without any educational background, those finished high school, diploma, and university were less likely to be diagnosed by TB with 49%, 58%, and 82% lower odds, respectively. After adjusted to other independent variables, compared to those unemployed, those worked in private employee, entrepreneur, farmer, and

driver were found less likely to be diagnosed for TB with 75%, 42%, 31%, and 40% lower odds, respectively. The health insurance ownership revealed that compared to those are holding the BPJS PBI/Jamkesda, those with none health insurance was found less likely to be diagnosed for TB with 39% lowering the odds. Additionally, the status in the household found significantly affect the TB case, compared to head of households, those who are wife or husband were significantly reducing the odds by 31%. According to model building, the Pseudo R2 revealed that the independent variables in this model are explaining the 2.70% the association with TB diagnosis. The rest of the variables are not included in this study.

Table 3. The binary logistic regression of effect sociodemographic and health insurance ownership on TB case

Variables = 97,339	Adj Odds Ratio	95% confidence interval		p-value
Age group				
Elderly	ref			
Old age	0.79	0.61	1.03	0.077
Very old	0.67	0.21	2.12	0.499
Sex				
Male	ref			
Female	0.45	0.34	0.60	0.000
Marital status				
Unmarried	ref			
Married	1.11	0.49	2.50	0.804
Divorced (life)	2.07	0.84	5.06	0.113
Divorced (death)	0.90	0.40	2.03	0.797
Educational level				
None	ref			
Not finished primary school	1.01	0.75	1.36	0.948
Primary school	0.83	0.64	1.08	0.161
Secondary higher school	0.74	0.52	1.04	0.085
High school	0.51	0.35	0.75	0.001
Diploma	0.42	0.21	0.84	0.015
University	0.18	0.08	0.43	0.000
Occupation				
Unemployed	ref			
Student	1.96	0.72	5.34	0.189
Government officer	0.54	0.26	1.12	0.097
Private employee	0.25	0.09	0.67	0.006
Entrepreneur	0.58	0.41	0.82	0.002
Farmer	0.69	0.54	0.88	0.003
Fisherman	0.93	0.54	1.60	0.790
Driver, etc	0.60	0.40	0.91	0.016
Others	0.84	0.60	1.18	0.316
Health insurance				
BPJS PBI/Jamkesda	ref			
BPJS non PBI	0.95	0.76	1.20	0.690
Private insurance	1.48	0.82	2.65	0.190
None	0.61	0.48	0.78	0.000
Place of residence				
Urban	ref			
Rural	1.12	0.93	1.35	0.228
Status in family				
Head	ref			
Wife/husband	0.69	0.48	0.99	0.042
Child/child in law, grandchild	0.83	0.60	1.14	0.238
Driver, housekeeper, other relatives	1.35	0.66	2.77	0.411
cons	0.01	0.01	0.03	0.000

Note: *p-value <0.05, **p-value<0.01, ***p-value<0.001

Prob > chi2 = 0.0000, Log likelihood = 3338.7385, Pseudo R2 = 0.0270

DISCUSSION

This study found that 0.57% of the elderly population were diagnosed with tuberculosis, a proportion that is relatively low but still concerning considering the vulnerability of this age group. The majority of respondents were in the younger elderly category (aged 60–74 years), consistent with national demographic data indicating that this subgroup constitutes the largest portion of the older adult population in Indonesia. Age has a significant contribution to the variation in tuberculosis incidence rates between genders (17). On the other hand, based on WHO reports that TB prevalence does not always exhibit strong gender disparities in older populations, although some studies have indicated a higher risk in males due to behavioral and occupational exposures (4,18–20).

The majority of elderly TB cases had only completed primary education supports previous research which noted that lower educational attainment is associated with reduced TB awareness and delayed treatment seeking (21). Furthermore, the dominance of farmers and unemployed individuals among the respondents reflects socioeconomic vulnerability, which has also been linked to higher TB risk (22). The fact that over half of the participants were covered under BPJS PBI indicates reasonable access to health services; however, this does not necessarily correlate with reduced TB incidence, which contradicts the findings of a previous study that reported that JKN membership improved early TB detection among the elderly (16). This highlights the need to examine not just insurance coverage, but also its effective utilization and quality of care accessed by older persons.

Several sociodemographic variables were significantly associated with tuberculosis among older adults, including gender, marital status, education level, occupation, health insurance coverage, residence, and household status. These findings reinforce the complexity of TB determinants in older adults. For example, male respondents had significantly higher TB prevalence than female respondents (0.78% vs. 0.37%), consistent with previous studies that have linked this difference to greater lifetime exposure to risky environments and behavioral factors among men (23). Similarly, lower education level was associated with higher TB prevalence. Limited education may reduce TB awareness and delay health-seeking behavior (24). Notably, Individuals using government-subsidized insurance schemes (BPJS PBI/Jamkesda) showed higher TB prevalence compared to those with private insurance or no insurance—an unexpected pattern that may reflect differences in health service access, utilization, or lack of diagnosis among the uninsured. Similarly, in Ghana, the national health insurance (NHIS) was found to be ineffective in reducing the financial burden on households affected by TB, suggesting that simply having insurance may not be enough to ensure effective TB care and protection from financial hardship (25). Place of residence also showed a significant association, with rural older adults having slightly higher rates of TB than urban residents, consistent with previous studies showing limited access to health services in rural areas (26). Interestingly, age group was not significantly associated with TB prevalence, suggesting that risk persists across all subgroups of older adults and may be more influenced by social and structural factors than age alone. These findings highlight the importance of addressing multiple interrelated vulnerabilities in TB prevention strategies for older adults.

Multivariate analysis results through binary logistic regression showed that several sociodemographic and insurance-related variables were significantly associated with the likelihood of being diagnosed with TB among the elderly. Elderly women were found to have a 55% lower probability of being diagnosed with TB compared to men, supporting findings from previous studies linking higher TB prevalence among elderly men to behavioral risk factors and lifetime occupational exposure (27). Educational attainment also showed a strong protective effect; individuals with higher levels of education (high school and above) were significantly less likely to be diagnosed with TB. This trend is in line with studies emphasizing the role of education in improving TB awareness, health literacy, and health-seeking behavior (28). Interestingly, the occupational variable revealed that those who were employed—especially in the private sector, entrepreneurship, agriculture, and driving—had a significantly lower risk of TB compared to the unemployed, possibly reflecting better mobility, income, and access to care, although this finding contrasts with previous study linking certain labor-intensive occupations to increased TB risk due to exposure to poor environments (29).

Another important and somewhat unexpected finding was that older adults who did not hold the health insurance is reducing the self-reported TB diagnosis by 49%, which contradicts some previous studies that suggest that health insurance increases access to diagnostic services (30). This anomaly may reflect underdiagnosis or lower utilization of health services among the uninsured, rather than a true lower prevalence of TB. In addition, household status significantly influenced TB outcomes: individuals who were partners (husband/wife) rather than heads of

household were 31% less likely to be diagnosed with TB, possibly reflecting differences in household roles, exposures, or access to resources. However, it is important to note that the overall explanatory power of the model remained low (Pseudo $R^2 = 2.70\%$), indicating that while some associations were statistically significant, many other unmeasured variables likely contribute to TB risk among older adults. This highlights the need for more comprehensive models that incorporate environmental, behavioral, and biological factors in future research.

This study provides valuable insights into the sociodemographic and health insurance factors associated with tuberculosis (TB) among older adults in Indonesia; however, several limitations should be noted. The cross-sectional design limits the ability to infer causality. The use of secondary data restricts inclusion of behavioral, environmental, and clinical variables that may affect TB risk. Possible underreporting or misclassification of TB cases could also occur. Moreover, the low explanatory power of the model (Pseudo $R^2 = 2.70\%$) indicates that other unmeasured factors likely influence TB prevalence.

Future studies should use longitudinal designs to clarify causal relationships and include broader variables such as comorbidities, nutrition, and access to health care. Incorporating qualitative approaches could also provide deeper understanding of older adults' experiences with TB services. Expanding research to diverse regions would enhance the generalizability and relevance of findings for TB prevention among the elderly.

CONCLUSION

In conclusion, this study highlights several key factors associated with the likelihood of self-reported tuberculosis (TB) diagnosis among the elderly in Indonesia. Female gender, higher levels of education, certain occupations were found to significantly reduce the odds of TB diagnosis. However, health insurance ownership was significantly associated with reducing the self-reported TB diagnosis. Conversely, being the head of a household increased the likelihood of being diagnosed with TB. These findings suggest that addressing socio-demographic disparities, improving access to healthcare, and promoting health education could play a crucial role in reducing TB prevalence among older adults in Indonesia. It is recommended to enhance targeted TB prevention and treatment efforts for elderly individuals, especially focusing on gender, education, occupation, and health insurance coverage.

AUTHOR'S CONTRIBUTION STATEMENT

Lili Amaliah contributed to the conceptualization, data collection, analysis, and drafting of the manuscript. Oktia Woro Kasmini Handayani provided guidance on the study design, data interpretation, and critical revision of the manuscript for important intellectual content. Intan Zainafree assisted in data analysis, literature review, and manuscript editing. All authors have read and approved the final version of the manuscript.

CONFLICTS OF INTEREST

The authors declare that there are no conflicts of interest associated with this research, and no financial or personal relationships have influenced the work reported in this manuscript.

DECLARATION OF GENERATIVE AI AND AI-ASSISTED TECHNOLOGIES IN THE WRITING PROCESS

The authors declare that generative AI and AI-assisted technologies, specifically ChatGPT (OpenAI), were utilized solely to improve the clarity, grammar, and readability of the manuscript. The authors take full responsibility for the content, interpretation, and conclusions presented in this paper.

SOURCE OF FUNDING STATEMENTS

This research did not receive any specific grant or financial support from public, commercial, or not-for-profit funding agencies. The study was conducted independently without external financial assistance.

ACKNOWLEDGMENTS

The authors would like to express their sincere gratitude to the Doctoral Program in Public Health, Universitas Negeri Semarang (UNNES), for the academic support, valuable guidance, and conducive research environment provided throughout the completion of this study.

BIBLIOGRAPHY

1. Yang H, Ruan X, Li W, Xiong J, Zheng Y. Global, regional, and national burden of tuberculosis and attributable risk factors for 204 countries and territories, 1990–2021: a systematic analysis for the Global Burden of Diseases 2021 study. *BMC Public Health*. 2024 Nov 11;24(1):3111.
2. Shang W, Cao G, Jing W, Liu J, Liang W, Liu M. Global Burden of Tuberculosis in Adolescents and Young Adults: 1990–2019. *Pediatrics*. 2024;153(4):e2023063910.
3. Chakaya J, Petersen E, Nantanda R, Mungai BN, Migliori GB, Amanullah F, et al. The WHO Global Tuberculosis 2021 Report—not so good news and turning the tide back to End TB. *International Journal of Infectious Diseases*. 2022;124:S26–9.
4. World Health Organization. Global tuberculosis report 2023 [Internet]. 2023 Nov [cited 2025 May 22]. Available from: <https://www.who.int/publications/i/item/9789240083851>
5. Kak N, Chakraborty K, Sadaphal S, AlMossawi HJ, Calnan M, Vikarunnessa B. Strategic priorities for TB control in Bangladesh, Indonesia, and the Philippines – comparative analysis of national TB prevalence surveys. *BMC Public Health*. 2020 Dec 25;20(1):560.
6. Caraux-Paz P, Diamantis S, de Wazières B, Gallien S. Tuberculosis in the Elderly. *J Clin Med*. 2021 Dec 15;10(24):5888.
7. Olmo-Fontánez AM, Turner J. Tuberculosis in an Aging World. *Pathogens*. 2022 Sep 26;11(10):1101.
8. Vishnu Sharma M, Arora VK, Anupama N. Challenges in diagnosis and treatment of tuberculosis in elderly. *Indian Journal of Tuberculosis*. 2022;69:S205–8.
9. Saunders MJ, Tovar MA, Collier D, Baldwin MR, Montoya R, Valencia T, et al. Active and Passive Case-Finding in Tuberculosis-Affected Households in Peru: A 10-Year Prospective Cohort Study. *Lancet Infect Dis*. 2019;19(5):519–28.
10. Millet JP, Moreno A, Fina L, del Baño L, Orcau A, de Olalla PG, et al. Factors that influence current tuberculosis epidemiology. *European Spine Journal*. 2013 Jun 8;22(S4):539–48.
11. Mohidem NA, Osman M, Hashim Z, Muhamram FM, Mohd Elias S, Shaharudin R. Association of sociodemographic and environmental factors with spatial distribution of tuberculosis cases in Gombak, Selangor, Malaysia. *PLoS One*. 2021 Jun 17;16(6):e0252146.
12. Gelaw YA, Williams G, Assefa Y, Asressie M, Soares Magalhães RJ. Sociodemographic profiling of tuberculosis hotspots in Ethiopia, 2014–2017. *Trans R Soc Trop Med Hyg*. 2019 Jul 1;113(7):379–91.
13. Parsons K, Gaudine A, Swab M. Experiences of older adults accessing specialized health care services in rural and remote areas: a qualitative systematic review. *JBI Evid Synth*. 2021 Jun;19(6):1328–43.
14. Ehsanul Huq KATM, Moriyama M, Zaman K, Chisti MJ, Long J, Islam A, et al. Health seeking behaviour and delayed management of tuberculosis patients in rural Bangladesh. *BMC Infect Dis*. 2018 Dec 12;18(1):515.
15. Maulana N, Soewondo P, Adani N, Limasalle P, Pattnaik A. How Jaminan Kesehatan Nasional (JKN) coverage influences out-of-pocket (OOP) payments by vulnerable populations in Indonesia. *PLOS Global Public Health*. 2022 Jul 7;2(7):e0000203.
16. Fuady A, Houweling TAJ, Mansyur M, Burhan E, Richardus JH. Cost of seeking care for tuberculosis since the implementation of universal health coverage in Indonesia. *BMC Health Serv Res*. 2020 Dec 3;20(1):502.
17. Peer V, Schwartz N, Green MS. Gender differences in tuberculosis incidence rates—A pooled analysis of data from seven high-income countries by age group and time period. *Front Public Health*. 2023 Jan 10;10.
18. Gompo TR, Shrestha A, Ranjit E, Gautam B, Ale K, Shrestha S, et al. Risk factors of tuberculosis in human and its association with cattle TB in Nepal: A one health approach. *One Health*. 2020 Dec;10:100156.
19. Humayun M, Chirenda J, Ye W, Mukeredzi I, Mujuru HA, Yang Z. Effect of Gender on Clinical Presentation of Tuberculosis (TB) and Age-Specific Risk of TB, and TB-Human Immunodeficiency Virus Coinfection. *Open Forum Infect Dis*. 2022 Oct 5;9(10).
20. Dabitao D, Bishai WR. Sex and Gender Differences in Tuberculosis Pathogenesis and Treatment Outcomes. In 2023. p. 139–83.

21. Lestari BW, McAllister S, Hadisoemarto PF, Afifah N, Jani ID, Murray M, et al. Patient pathways and delays to diagnosis and treatment of tuberculosis in an urban setting in Indonesia. *Lancet Reg Health West Pac.* 2020 Dec;5:100059.
22. Pittalis S, Piselli P, Contini S, Gualano G, Alma MG, Tadolini M, et al. Socioeconomic status and biomedical risk factors in migrants and native tuberculosis patients in Italy. *PLoS One.* 2017 Dec 18;12(12):e0189425.
23. Marçôa R, Ribeiro AI, Zão I, Duarte R. Tuberculosis and gender – Factors influencing the risk of tuberculosis among men and women by age group. *Pulmonology.* 2018 May 30;24(3):199–202.
24. Makgopa S, Madiba S. Tuberculosis Knowledge and Delayed Health Care Seeking Among New Diagnosed Tuberculosis Patients in Primary Health Facilities in an Urban District, South Africa. *Health Serv Insights.* 2021 Jan 27;14.
25. Pedrazzoli D, Carter DJ, Borghi J, Laokri S, Boccia D, Houben RMGJ. Does Ghana's National Health Insurance Scheme provide financial protection to tuberculosis patients and their households? *Soc Sci Med.* 2021 May;277:113875.
26. Pradipta IS, Idrus LR, Probandari A, Puspitasari IM, Santoso P, Alffenaar JWC, et al. Barriers to Optimal Tuberculosis Treatment Services at Community Health Centers: A Qualitative Study From a High Prevalent Tuberculosis Country. *Front Pharmacol.* 2022 Mar 25;13.
27. Chidambaram V, Tun NL, Majella MG, Ruelas Castillo J, Ayeh SK, Kumar A, et al. Male Sex Is Associated With Worse Microbiological and Clinical Outcomes Following Tuberculosis Treatment: A Retrospective Cohort Study, a Systematic Review of the Literature, and Meta-analysis. *Clinical Infectious Diseases.* 2021 Nov 2;73(9):1580–8.
28. Saputra MR, Rakhmawati W, Hendrawati S, Adistie F. KNOWLEDGE, ATTITUDE, AND HEALTHCARE-SEEKING BEHAVIOR AMONG FAMILIES OF CHILDREN WITH TUBERCULOSIS. *Belitung Nurs J.* 2020 Aug 7;6(4):127–35.
29. Wang XQ, Zhang KD, Yu WJ, Zhao JW, Huang K, Hu CY, et al. Associations of exposures to air pollution and greenness with mortality in a newly treated tuberculosis cohort. *Environmental Science and Pollution Research.* 2022 Dec 12;30(12):34229–42.
30. Marahatta SB, Yadav RK, Giri D, Lama S, Rijal KR, Mishra SR, et al. Barriers in the access, diagnosis and treatment completion for tuberculosis patients in central and western Nepal: A qualitative study among patients, community members and health care workers. *PLoS One.* 2020 Jan 15;15(1):e0227293.