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Introduction: Indonesia, with the world's second-highest tuberculosis (TB) burden, has 

targeted TB elimination (65 cases per 100,000) by 2030. This study aimed to evaluate the 

feasibility of achieving this goal by projecting TB incidence trends using a stochastic epidemic 

model that accounts for the uncertainties inherent in TB transmission dynamics in latent TB 

infections. 

Methods: The initial values for state variables and parameters were derived from a 

comprehensive literature review and calibrated against publicly available epidemiological data 

from the Indonesian Ministry of Health reports from 2018-2022. A Susceptible, Vaccinated, 

Three Exposed, Three Infectious, Recovered (SVE3I3R) model was developed, incorporating 

Gaussian noise into the exposed compartments to simulate real-world unpredictability in latent 

infection dynamics. The model was solved numerically using the fourth-order Runge-Kutta 

(RK4) method in R software. Key outcomes measured were the projected incidence of drug-

susceptible TB (DS-TB), multidrug-resistant TB (MDR-TB), and extensively drug-resistant 

TB (XDR-TB).  

Results: Model projections suggest that the overall TB incidence rate will fall from 387 cases 

per 100,000 people in 2023 to a projected 320 cases per 100,000 by 2030. However, this 

remains far above the national target. While DS-TB cases decreased to 730,283, MDR-TB and 

XDR-TB cases were projected to surge dramatically to 120,939 cases and 104,651 individuals, 

respectively. The estimation signals a critical shift in the epidemic's profile. 

Conclusions: Indonesia is not on track to achieve its 2030 TB elimination target under current 

interventions. The alarming rise of drug-resistant TB necessitates an urgent, aggressive, and 

multifaceted policy response. This study underscores the critical value of incorporating 

stochasticity into epidemiological models for more realistic forecasting and public health 

planning in high-burden settings. 
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INTRODUCTION  
Tuberculosis (TB) remains a significant global health challenge, primarily caused by the bacterium 

Mycobacterium tuberculosis (Mtb). While TB predominantly affects the lungs, it can also impact other vital organs, 

including the kidneys, brain, and spine (1). The transmission of TB occurs through respiratory droplets expelled by 

an infected individual, making it highly contagious (2). 

In 2023, TB emerged as the leading cause of death from a single infectious agent, surpassing COVID-19 and 

resulting in nearly double the fatalities of HIV/AIDS. Despite being preventable and curable, over 10 million 

individuals contracted TB annually, with an incidence rate of 134 new cases per 100,000 people globally. The burden 

of TB is disproportionately concentrated in 30 high-burden countries, which account for 87% of global cases, with 

India, Indonesia, China, the Philippines, and Pakistan representing 56% of these cases. Demographically, affected 

individuals comprised 55% men, 33% women, and 12% children, leading to approximately 1.25 million deaths in 

total. The rise in newly diagnosed TB cases to 8.2 million in 2023 can be attributed to delays caused by COVID-19 

disruptions, alongside the alarming emergence of multidrug-resistant or rifampicin-resistant TB (MDR/RR-TB), with 

approximately 175,923 individuals diagnosed out of an estimated total of 400,000 that year (3,4). 

In Indonesia, the situation is particularly dire. According to the Global TB Report 2024, Indonesia accounts 

for 10% of total global TB cases as of 2023, making it the second-largest contributor to the TB epidemic worldwide. 

With a population of 281 million, Indonesia has an estimated TB incidence rate of 387 cases per 100,000 people, 

reporting 286 new and relapse TB cases per 100,000. The total estimated number of TB deaths is around 130,927, 

while the incidence of rifampicin-resistant TB (RR-TB) cases is approximately 29,535. Further, Indonesia is 

estimated to have about 1,090,000 TB cases annually, with a mortality rate of 125,000 deaths, equating to roughly 

14 deaths per hour in 2023 (5). The urgent need for action to combat the TB epidemic is underscored by the United 

Nations Sustainable Development Goals (SDGs), which aim to eliminate TB by 2030. The WHO's End TB Strategy 

sets ambitious targets for reducing TB deaths and incidence rates by 2030 and 2035, respectively (6,7). 

Indonesia Presidential Regulation No. 67 of 2021 outlines a strategic plan for TB elimination by 2030, aiming 

to reduce the incidence to 65 cases per 100,000 population and the mortality rate to 6 deaths per 100,000 population 

(8). This strategy emphasizes improving access to health services, early diagnosis, appropriate treatment, and 

prevention through vaccination and control of risk factors. However, significant challenges persist due to inadequate 

healthcare systems and limited funding. The complexity of TB transmission dynamics necessitates innovative 

approaches to address these challenges effectively. 

Recent advancements in epidemic modeling, particularly deterministic and stochastic models, have proven 

instrumental in understanding TB transmission dynamics and evaluating the effectiveness of intervention strategies. 

These models utilize mathematical, statistical, and computational tools to analyze the spread of infectious diseases 

within populations, relying on data that encapsulates demographic processes, environmental factors, and health 

impacts (9). Deterministic models, such as the Susceptible, Infectious, Recovered (SIR) and Susceptible, Exposed, 

Infectious, Recovered (SEIR) frameworks, have been employed to predict TB spread. For instance, a study in Ghana 

utilizing the SEIR model recommended enhancing early detection mechanisms for TB (10). Similarly, studies in 

China and Pakistan employing the Susceptible, Vaccine, Exposed, Infectious, Recovered (SVEIR) and Susceptible, 

Latent, Infectious, Treated, Recovered (SLITR) models identified increasing treatment rates with low cost as a 

feasible strategy for TB elimination (11,12). 

However, the inherent complexities of TB, including latent phases and drug resistance, render deterministic 

models insufficient for capturing the actual dynamics of TB transmission. These models often fail to account for the 

uncertainty and variability, leading to less accurate predictions (13). Consequently, there is a pressing need for more 

sophisticated modeling approaches that can realistically simulate TB spread. 

A recent study has explored using the Susceptible, Three Exposed, Three Infectious, Recovered (SE3I3R) 

model to assess the impact of cure rates on latent TB infections in the elimination process from 2019 to 2030 (14). A 

modified SVEIR model has also been proposed to enhance prediction accuracy regarding TB spread (15). This study 

introduces the Susceptible, Vaccinated, Three Exposed, Three Infectious, Recovered (SVE3I3R) model, which 

integrates elements from both previous models while incorporating Gaussian noise parameters to create a stochastic 

framework. Gaussian Noise is a statistical term referring to random variations that follow a normal distribution, 

characterized by a symmetric bell-shaped curve around a mean value. In epidemiological modeling, it is used to 
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represent uncertainties, measurement errors, or unobserved variability in data, enhancing the realism of predictions 

by accounting for randomness that deterministic models often ignore. Gaussian noise enhances the model's ability to 

handle uncertainties often overlooked by deterministic approaches (16,17).  

The evolution of the Gaussian noise as a component of stochastic effects highlights the significance of 

incorporating stochastic elements in modeling infectious diseases like TB (18). This approach allows for a more 

nuanced understanding of the fluctuating data that deterministic models cannot adequately address. The increasing 

severity of TB further underscored the necessity of flexible and adaptive modeling to comprehend TB transmission 

dynamics. Disruptions in TB health services during the pandemic have led to an increase in undiagnosed and 

untreated cases, exacerbating the TB burden (19). Incorporating Gaussian noise is expected to yield more accurate 

predictions. 

The study aims to evaluate Indonesia's target of achieving its TB elimination target by 2030, as outlined in 

Presidential Regulation No. 67 of 2021, using an epidemiological model with Gaussian noise as a stochastic approach. 

The study employs the SVE3I3R model integrated with Gaussian noise to account for uncertainties and variability in 

TB transmission dynamics in latent infections. This innovative approach has not been widely applied in the 

Indonesian context, positioning this study as a critical contribution to understanding TB dynamics, developing 

effective control strategies, and informing public health policy in Indonesia to achieve the TB elimination target by 

2030 in accordance with the Sustainable Development Goals (SDGs). 

 

METHOD  
Study Procedure 

This study procedure will be conducted systematically through several key stages. The initial stage begins 

with developing a disease transmission flowchart to illustrate the dynamics of TB spread, establishing the 

foundational structure for a Susceptible-Vaccinated-Exposed-Infectious-Recovered (SVEIR) compartmental model. 

Based on this structure, the epidemiological model will be formed through a system of ordinary differential equations. 

Following model development, constant initial values for each compartment will be determined based on available 

epidemiological data, assigning relevant parameter values (e.g., infection rate, recovery rate, vaccination parameters, 

etc.) sourced from previous studies or adjusted for the Indonesian context. Some stochastic Gaussian Noise following 

a normal distribution will be incorporated into the model to simulate random variability, test model robustness, 

prevent overfitting, and improve long-term prediction accuracy to enhance realism and capture data uncertainty. The 

ODE system will then be estimated using the fourth-order Runge-Kutta (RK4) method to iteratively calculate changes 

in each compartment over time, generating a monthly estimated TB incidence rate dataset from 2024 to 2030 (n=84 

months) with a stopping iteration criterion. This estimated dataset will be subjected to descriptive statistical analysis. 
It does so to elucidate trends and patterns, including tabulation and visualization (20–22). Finally, the estimated TB 

incidence, calculated as a proportion of the infectious population against the total population, will be evaluated against 

Indonesia's 2030 TB elimination targets to assess the country's progress and to inform data-driven recommendations, 

culminating in a conclusion that summarizes the principal findings from the application of the SVEIR model. 

 

Assumptions and Model Formulation 

In the pathogenesis of TB, droplet nuclei are airborne particles that carry Mtb. When inhaled, they contain 

tubercle bacilli that enter the lungs of susceptible individuals. Susceptible individuals are those who can incur the 

disease but are not yet infected by Mtb. We symbolize susceptible individuals as 𝑆. After receiving the infection, 

within weeks, the immune system in susceptible individuals can stop the multiplication and development of tubercle 

bacilli. At that moment, susceptible individuals are changed to LTBI (23,24). 

We denote anyone who has LTBI as an exposed individual. Exposed individuals are those who Mtb infects, 

do not feel sick, and cannot spread TB bacteria to others. They are at risk for active TB disease in the future. We 

symbolize the exposed individuals group as 𝐸 and the infection rate of susceptible individuals to exposed individuals 

as 𝛼. We divide 𝐸 into three compartments according to the transmission of each infectious individual: exposed 

individuals for drug-susceptible TB (DS-TB), exposed individuals for multidrug-resistant TB (MDR-TB), and 

exposed individuals for the extensively drug-resistant TB (XDR-TB) are denoted as 𝐸1, 𝐸2, and 𝐸3, respectively. 
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In this model, vaccinated individuals (𝑉) represent a population subset that has acquired temporary immunity 

against TB through vaccination. The model assumes vaccination reduces susceptibility to TB infection, but immunity 

wanes over time, reflecting real-world limitations in vaccine durability. This condition causes vaccinated individuals 

to return to susceptible status, denoted by the parameter 𝜉. Conversely, susceptible individuals who receive the 

vaccine move into compartment 𝑉, with this switch denoted by the parameter 𝜏. 

Any exposed individuals can progress to active TB as infectious individuals. In such cases, infectious 

individuals are characterized by symptomatic active TB. Unlike exposed individuals, who harbour Mtb without 

symptoms, active TB involves clinical manifestations such as cough, fever, or weight loss. Infectious individuals can 

transmit Mtb to susceptible persons through close interpersonal contact (25). They are the primary drivers of TB 

transmission. The compartments for Infectious individuals are categorized as 𝐼1 (DS-TB), 𝐼2 (MDR-TB), and 𝐼3 

(XDR-TB) with parameters 𝛽1, 𝛽2dan 𝛽3 as the transition rate from exposed to infectious according to the route of 

transmission. 

DS-TB, MDR-TB, and XDR-TB refer to different types of TB based on the resistance of the TB bacteria to 

anti-TB medications. DS-TB is TB that can be treated with standard first-line anti-TB drugs. MDR-TB is TB resistant 

to at least isoniazid and rifampin, two of the most effective first-line drugs. XDR-TB is a more severe form of MDR-

TB where the bacteria are also resistant to certain fluoroquinolones and at least one of the second-line injectable drugs 

like bedaquiline or linezolid (26). 

DS-TB is generally considered less dangerous than MDR-TB and XDR-TB in terms of treatment complexity, 

mortality risk, and public health impact. Treatment for XDR-TB involves therapies that are more harmful to patients, 

costlier to administer, and less successful in achieving recovery compared to MDR-TB treatments, even more so DS-

TB Treatment. This study assumes that each susceptible individual must go through the exposed individual stage 

before becoming an infectious individual. 

This model's recovery rate encompasses both spontaneous resolution and treatment-mediated recovery. 

Recovered individuals (𝑅) are those who have fully healed from the infection. Transition to the R compartment 

occurs through two distinct pathways:  first, spontaneous recovery, in which Exposed individuals clear the infection 

without medical intervention. This condition is denoted by 𝜌1, 𝜌2, and 𝜌3 from 𝐸1, 𝐸2, and 𝐸3 to the 𝑅 compartment, 

respectively. The second is treatment success, in which infectious individuals adhere to therapy, achieving outcomes 

classified as cured or treatment completed. This condition is denoted by 𝛿1, 𝛿2, and 𝛿3 from 𝐼1, 𝐼2, and 𝐼3 to 𝑡ℎ𝑒 𝑅 

compartment, respectively. The latter pathway reflects clinical success contingent on strict adherence to prescribed 

regimens, ensuring the elimination of the pathogen or completion of the treatment protocol. This dual mechanism 

highlights the roles of natural immunity and healthcare efficacy in reducing the infected population. 

Infectious individuals with DS-TB can progress to MDR-TB and XDR-TB. Likewise, Infectious individuals 

with MDR-TB can progress to XDR-TB due to inadequate treatment, leading to the development of antibiotic 

resistance in the TB bacteria. Infectious individuals with MDR-TB can then further develop into XDR-TB if second-

line drugs are misused or if the patient does not comply with the treatment regimen. Limited diagnostics, delayed 

treatment, and fragmented healthcare systems exacerbate this cycle (27). In this model, progression from DS-TB to 

MDR-TB and XDR-TB is represented by 𝛾1 and  𝛾3, respectively, and from MDR-TB to XDR-TB by 𝛾2. 

Relapse, a critical feature of TB epidemiology, is explicitly integrated into the Epidemic model in this study 

to reflect the heightened risk of reinfection or reactivation among individuals who have previously recovered from 

TB. Unlike diseases that confer lifelong immunity, TB is characterized by the absence of permanent immune 

protection, meaning Recovered individuals (𝑅) remain vulnerable to reinfection or recurrence of latent infection. 

This phenomenon is central to the model’s realism, as relapse significantly sustains TB transmission in endemic 

regions. 

There are two kinds of relapses as parameters, namely Loss of immunity (𝜑) and Direct Reactivation 

(𝜃1, 𝜃2, 𝜃3). Loss of Immunity (𝜑) is the rate at which recovered individuals gradually lose partial immunity over 

time, reverting to the susceptible individual (𝑆). This transition acknowledges that immunity wanes, leaving 

individuals prone to new exposures and reinfection. Direct reactivation (𝜃1, 𝜃2, 𝜃3) is the rate at which recovered 

individuals may experience relapse without re-entering the susceptible stage, transitioning directly back into the 

infectious compartments (𝐼1, 𝐼2,  𝐼3) at strain-specific rates 𝜃1, 𝜃2, 𝜃3. This pathway captures the reactivation of latent 

TB infection (LTBI) or treatment-incomplete recovery, where residual bacteria resurge, leading to active disease. 
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In this epidemic model, 𝛬 is the natural birth rate. We divide the death rate into two components: 𝜇 is the 

natural death rate in susceptible, vaccinated, exposed, and recovered individuals. 𝜇𝑡 is the rate of death that occurs 

before or during treatment in infectious individuals. This study will develop a mathematical model in epidemiology 

based on the SVEIRS model. Based on all our assumptions, the study evolved and partitioned the model into nine 

compartments according to their epidemiological status, representing each population group. The nine compartments 

are susceptible, vaccinated, exposed for DS-TB, exposed for MDR-TB, exposed for XDR-TB, DS-TB, MDR-TB, 

XDR-TB, and the recovered compartment. Compartments (e.g., 𝑆, 𝑉, 𝑅) define the model’s conceptual stages of 

disease progression, while state variables (e.g., 𝑆(𝑡), 𝑉(𝑡), 𝑅(𝑡)) quantify the population size in each compartment 

over time, evolving via parameters and differential equations. Furthermore, 𝑁 (𝑡) is the total population size at time 

𝑡, and therefore, the study has: 

 

𝑁(𝑡) = 𝑆(𝑡) + 𝑉(𝑡) +  𝐸1(𝑡) + 𝐸2(𝑡) + 𝐸3(𝑡) + 𝐼1(𝑡) + 𝐼2(𝑡) + 𝐼3(𝑡) + 𝑅(𝑡) (1) 

 

Based on these assumptions, the study constructed a flowchart for TB transmission, as shown in Figure 1, to 

visualize the progression of individuals across epidemiological compartments. 

 

 
Figure 1. Flowchart of TB Transmission using SV3E3IR Compartment 

 

Further, another assumption in the model is that the rate of increase of any state is equal to the number 

entering into the state minus the number leaving the state per unit time. Based on the assumption, we formulate the 

epidemic model as follows. 
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𝑑𝑆

𝑑𝑡
= 𝛬N +  𝜉𝑉 +  𝜑𝑅 −

𝑆

𝑁
 ∑ 𝛼𝑖𝐼𝑖

3

𝑖=1

− 𝜇𝑆 −  𝜏𝑆 (2) 

𝑑𝑉

𝑑𝑡
= 𝜏𝑆 − 𝑉(𝜉 + 𝜇) (3) 

𝑑𝐸1

𝑑𝑡
=

𝛼1𝑆𝐼1

𝑁
 − 𝐸1(𝛽1 + 𝜌1 + 𝜇) (4) 

𝑑𝐸2

𝑑𝑡
=

𝛼2𝑆𝐼2

𝑁
 − 𝐸2(𝛽2 + 𝜌2 + 𝜇) (5) 

𝑑𝐸3

𝑑𝑡
=

𝛼3𝑆𝐼3

𝑁
− 𝐸3(𝛽3 + 𝜌3 + 𝜇) (6) 

𝑑𝐼1

𝑑𝑡
= 𝛽1𝐸1 + 𝜃1𝑅 − 𝐼1(𝛿1 + 𝛾1 + 𝛾3 + 𝜇𝑡1) (7) 

𝑑𝐼2

𝑑𝑡
= 𝛽2𝐸2 + 𝜃2𝑅 + 𝛾1𝐼1 − 𝐼2(𝛿2 + 𝛾2 + 𝜇𝑡2) (8) 

𝑑𝐼3

𝑑𝑡
= 𝛽3𝐸3 + 𝜃3𝑅 + 𝛾3𝐼1 + 𝛾2𝐼2 − 𝐼3(𝛿3 − 𝜇𝑡3) (9) 

𝑑𝑅

𝑑𝑡
= ∑(𝛿𝑖𝐼𝑖

3

𝑖=1

+ 𝜌1𝐸1) − 𝑅(𝜑 + ∑ 𝜃𝑖

3

𝑖=1

+ 𝜇) (10) 

 

In study work, all parameters in the epidemic model are positive constants except for the Gaussian noise. 

This epidemic model integrates Gaussian noise, a parameter that randomizes normally distributed fluctuations with 

zero mean, only into the exposed compartments (𝐸1, 𝐸2,  𝐸3) to account for real-world unpredictability in TB 

transmission. The value of gaussian noise were not chosen arbitrarily but were calibrated based on normal condition 

in real life where it references to using normal distribution (Gaussian distribution). It is defined by two parameters: 

the mean (average) and the standard deviation (spread or variability). Statistically, this noise introduces variability 

into differential equations, mimicking uncertainties like underreported latent infections, diagnostic inconsistencies, 

or environmental factors. Epidemiologically, it reflects challenges in detecting LTBI, where asymptomatic individuals 

often evade surveillance due to limited testing, healthcare access barriers, or silent disease progression. 

 In practice, Gaussian noise captures hidden dynamics: random spikes may represent undetected LTBI 

clusters, while dips could signal temporary improvements in screening. It also models biological heterogeneity (e.g., 

immune response variability) and behavioral factors (e.g., irregular contact patterns) that deterministic models 

oversimplify. In this epidemic model, Gaussian noise is symbolized by 𝜀. Based on this concept, this epidemic model 

uses Stochastic principles. Stochastic principles refer to using probability and random processes in modeling and 

understanding phenomena where outcomes are not predetermined but depend on chance or randomness. It is a 

fundamental concept used in various fields to describe and predict the behavior of systems over time, even when 

unpredictable factors influence those systems. This stochastic term modifies their differential equations: 

 
𝑑𝐸𝑖

𝑑𝑡
=

𝛼𝑖𝑆𝐼𝑖

𝑁
 − 𝐸𝑖(𝛽𝑖 + 𝜌𝑖 + 𝜇 − 𝜀);   (𝑖 = 1, 2, 3) (11) 

 

 

Initial Values of State Variables and Parameters 

The initial value of state variables and parameters used in this study are obtained from a literature review, 

including research articles, books, reports, and other studies related to the study as close to Indonesia's condition as 

possible. The initial values of each compartment used in the study can be seen in Table 1. Some initial values of the 

state variable in the model are calculated through estimation. Using WHO’s report, the number of DS-TB individuals 

(𝐼1) is obtained by calculating total infectious individuals less the number of MDR-TB individuals and the number 

of XDR-TB individuals (𝐼1 = 𝐼 - 𝐼2 - 𝐼3). The number of each type of exposed individual is calculated by the proportion 
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of each infectious compartment multiplied by the number of the exposed individuals as follows: 𝐸1 = (𝐸 x proportion 

of DS-TB in infectious individuals), 𝐸2 = (𝐸 x proportion of MDR-TB in infectious individuals), 𝐸3 = (𝐸 x proportion 

of XDR-TB in infectious individuals). Additionally, the number of susceptible individuals (𝑆) is estimated based on 

the calculation of total population less the number of vaccinated individuals, the number of exposed individuals, 

infectious individuals, and recovered individuals, as follows: 𝑆 = 𝑁- 𝑉-𝐸-𝐼–𝑅. 

  
Table 1. Initial values of state variables for TB disease transmission in Indonesia 

No. Symbol Value* Reference 

1 𝑆 156,288,179 Data fitted 

2 𝑉 3,069,255 (28)  

3 𝐸 120,000,000 (3), (29) 

4 𝐸1  116,633,945 Data fitted 

5 𝐸2  3,302,752 Data fitted 

6 𝐸3  63,303 Data fitted 

7 𝐼 1,090,000 (3) 

8 𝐼1 1,059,425 Data fitted 

9 𝐼2 30,000 (3) 

10 𝐼3  575 (3) 

11 𝑅 552,566 (30) 

12 𝑁 281,000,000 (3) 

*The unit of state variable is the number of individuals 

 

Some parameters in the model were calculated through estimation because data were not available. Those 

parameters were derived from a combination of sources to accurately reflect the epidemiological context of Indonesia. 

Primary data were sourced from the World Health Organization (WHO) Global Tuberculosis Reports (3), BPS-

Statistics Indonesia (31) and a literature (32). According to the pathogenesis of TB, infectious individuals can infect 

up to 10-15 other people in the course of a year (33). Based on this statement, the infection rate of susceptible 

individuals to each exposed individual was calculated by the number of each infectious individual multiplied by 15 

and divided by the number of susceptible individuals as follows: 𝛼1 = (𝐼1 𝑥 15)/ 𝑆, 𝛼2 = (𝐼2 𝑥 15)/ 𝑆, and 𝛼3 = (𝐼3 𝑥 

15)/ 𝑆. Then, the loss-of immunity rate (𝜑) is estimated based on the calculation of 1 minus the death rate in 𝑅 

compartment, relapse rate for DS-TB, relapse rate for MDR-TB and relapse rate for XDR-TB as follows: 𝜑 = 1 −
𝜇 −  𝜃1 −  𝜃2 −  𝜃3.  

Finally, the Gaussian noise in the system is described through the Gaussian noise parameters (𝜀1, 𝜀2, 𝜀3), 

which are generated using the normal distribution 𝑋~𝑁(𝜇 = 0, 𝜎2 = 0.012). The Gaussian noise parameters use 𝜇 =
0 and 𝜎 = 0.01 to introduce controlled, unbiased randomness (e.g., undetected TB cases or measurement errors) 

while minimizing disruption to core TB transmission dynamics. The zero mean avoids systematic bias, and the small 

variance reflects realistic data variability (e.g., inconsistent case detection, healthcare access, or other reasons) 

without obscuring deterministic trends. This balance preserves model interpretability for policy analysis while 

aligning with stochastic modelling standards that simulate background uncertainty in complex systems. The 

parameter values in Table 2 provide information on parameters to support the simulation and analysis of the epidemic 

model of TB spread in Indonesia in order to understand the epidemic dynamics and evaluate effective health 

intervention strategies. 

 
Table 2. Initial values of parameters for TB disease transmission in Indonesia 

No. Symbol Value References 

1 𝛬 0.1659 (31) 

2 𝜇 0.0592 (31) 

3 𝜏 0.019268 (32) 

4 𝜉 0.066667 (32) 

5 𝛼1 0.1017 Data fitted 

6 𝛼2 0.0029 Data fitted 

7 𝛼3 0.0001 Data fitted 
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8 𝛽1, 𝛽2, 𝛽3 0.003 (34) 

9 𝛾1 0.05 (35) 

10 𝛾2 0.1 (35) 

11 𝛾3 0.05 (35) 

12 𝛿1 0.87 (3) 

13 𝛿2 0.57 (3) 

14 𝛿3 0.49 (3) 

15 𝜃1, 𝜃2, 𝜃3 0.008843 (32)  

16 𝜌1, 𝜌2, 𝜌3 0.787718 (32) 

17 𝜑 0.914271 Data fitted 

18 𝜇𝑡1 0.2 (35); (36) 

19 𝜇𝑡2 0.4 (35); (36) 

20 𝜇𝑡3 0.6 (35); (36) 

21 𝜀1, 𝜀2, 𝜀3 𝑋~𝑁(𝜇 = 0, 𝜎2 = 0.012) Data fitted. 

Note: the unit of parameter is the number of individuals 

 

The SVE3I3R model simulations were solved using the Fourth-order Runge-Kutta (RK4) method for 

numerical integration, chosen for its high accuracy and computational efficiency in handling differential equations. 

Analyses and visualizations were performed in R-4.5.1 software, utilizing the deSolve packages and modified R 

programming syntax to manage stochastic components, illustrate transmission trends, and generate uncertainty bands 

simulations. The iterative estimation of TB incidence for 2024 to 2030 employed convergence criteria (Δ ≤ 1×10⁻⁴), 

where simulations halted when compartmental differences between consecutive iterations fell below this threshold. 

The system of stochastic differential equations was solved numerically using the RK4 method with a fixed time step 

of Δ ≤ 1×10⁻⁴ months. Convergence of the numerical solution was evaluated by monitoring the stability of the 

cumulative incidence trajectories. We tested smaller time steps and observed that the resulting trajectories for all 

compartments deviated by convergence criteria, confirming that our chosen step size provided a stable and convergent 

solution. Parameters were calibrated against epidemiological data to ensure accuracy, while the 85-month study 

period, starting in December 2023, using initial values and January 2024 until December 2030, based on simulation 

values, provided a structured timeline for evaluating the trend of TB Transmission. This systematic workflow 

combines RK4 precision, R-based analytics, iterative validation, and parameter calibration to ensure reproducible, 

policy-aligned insights into TB dynamics, adhering to robust epidemiological and computational standards. 

 

Ethical Approval 

This study did not involve human participants or animal subjects. As such, ethical approval was not required 

for this study. 

 

RESULTS 
The ODE system developed in this study was solved using the fourth-order Runge-Kutta (RK4) method in R 

software to calculate compartmental changes over time. This method was selected for its ability to provide highly 

accurate numerical solutions. The process was conducted iteratively to estimate the TB incidence rate from December 

2023 to December 2030. The iterative process continued until a convergence criterion was met, signifying that the 

simulation results showed no significant changes between consecutive iterations. Convergence was assessed by 

calculating the difference between the previous and current iteration for each compartment in the SVE3I3R model. 

The iteration was halted after a maximum of 10 runs or once the minimum value of all these compartment differences 

was greater than or equal to zero. This process achieved a high degree of accuracy, with a Δ value of 1,29 × 10−5, 

well below the termination criterion of 1 × 10−4. 

Furthermore, Gaussian noise was incorporated into the model via the epsilon parameters (𝜀1, 𝜀2, 𝜀2) for the 

exposed compartment (𝐸). A preliminary statistical summary of this noise (Table 3) indicates stable and controlled 

fluctuations. All three parameters have means close to zero and low standard deviations, confirming a symmetrical 

distribution with minimal variation. The interquartile ranges (IQR) are narrow, further reflecting this stability, though 

ε₃ exhibits a slightly wider range. For instance, the graph for 𝜀1 (representing exposed individuals for DS-TB) shows 
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values fluctuating between 9,90×10⁻⁸and 1,93×10⁻⁵ from 2023 to 2030. These controlled dynamics likely reflect 

random variations influenced by external factors like health policies, yet they remain within manageable limits, 

indicating overall model stability. 

 
Table 3. Summary Statistics of Gaussian Noise in exposed compartments 

Parameter Min Mean Max SD IQR 

Gaussian Noise 1 (𝜀1) 9,90×10⁻⁸ 5,63×10⁻⁶ 1,93×10⁻⁵ 4,58×10⁻⁶ 6,26×10⁻⁶ 

Gaussian Noise 2 (𝜀2) 1,00×10⁻⁸ 5,90×10⁻⁶ 2,09×10⁻⁵ 4,81×10⁻⁶ 5,78×10⁻⁶ 

Gaussian Noise 3 (𝜀3) 2,47×10⁻⁷ 6,35×10⁻⁶ 1,92×10⁻⁵ 4,35×10⁻⁶ 5,66×10⁻⁶ 

Min is the minimum value; mean is the average value; max is the maximum value; SD is the standard deviation value; IQR is 

the interquartile range value. 

Furthermore, the Gaussian noise 2 graph, which is related to exposed individuals for MDR-TB, shows greater 

fluctuations with a range of values from approximately 1,00×10⁻⁸ to 2,09×10⁻⁵. This more frequent and sharp 

fluctuation pattern indicates more significant differences in the number of exposed individuals for MDR-TB. This 

may be due to more complex challenges in controlling the spread of MDR TB, such as higher drug resistance, limited 

access to effective treatment, or lack of early detection. This instability emphasizes the need for more effective and 

responsive strategies in dealing with the spread of MDR-TB. The Gaussian noise 3 graph, which reflects exposed 

individuals for XDR-TB, shows a fluctuation range of approximately 2,47×10⁻⁷ to 1,92×10⁻⁵. Despite the variation, 

the fluctuations in Gaussian noise 3 indicate that the number of exposed individuals for XDR-TB experiences random 

dynamics that remain within more controlled limits than MDR-TB. This may reflect the success of stricter control 

efforts or more specific interventions against the spread of XDR TB. This relative stability may also be due to greater 

awareness of the dangers of XDR-TB and more effective prevention efforts. The visualization of the distribution of 

each Gaussian noise is illustrated in Figure 2. 

 

 
Figure 2. The visualization of the distribution of each Gaussian noise from December 2023 to 2030 

 

The study estimated the population size for each compartment in Indonesia based on the SVE3I3R model. 

Table 4 and Figure 3 present descriptive statistics summarizing statistics and visualizations from December 2023 to 

December 2030 for each compartment. This information provides critical insights into the projected dynamics of 

Indonesia's TB epidemic. 
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Table 4. Summary statistics for each compartment (in individuals) 

Symbol Min Mean Max SD IQR 

𝑆 156,288,179 167,626,783 181,711,340 7,602,624 12,955,962 

𝑉 3,069,255 6,128,972 9,306,955 1,830,124 3,074,421 

𝐸1  71,067,374 91,998,874 116,633,945 13,363,925 22,273,395 

𝐸2  2,011,831 2,604,802 3,302,752 378,605 631,006 

𝐸3  38,561 49,926 63,303 7,257 12,094 

𝐼1 730,283 869,777 1,059,425 95,663 155,962 

𝐼2 30,000 67,852 120,939 28,137 49,093 

𝐼3  575 45,132 104,651 31,944 55,516 

𝑅 552,566 199,88,739 32,828,936 9,448,065 15,300,228 

Min is the minimum value; mean is the average value; max is the maximum value; SD is the standard deviation value; IQR is 

the interquartile range value. 

The population distribution across model compartments is visualized in Figure 3. Subfigure 3(a) illustrates 

the projected number of infectious individuals with TB, categorized as DS-TB (𝐼1), MDR-TB (𝐼2), and XDR-TB (𝐼3) 

from December 2023 to December 2030, revealing significant epidemiological shifts. DS-TB cases (𝐼1) show a 

promising decline from approximately 1,059,425 to 730,283 individuals, with a standard deviation of 95,663, 

indicating the success of current treatment and prevention protocols. In contrast, MDR-TB cases (𝐼3) are projected to 

rise sharply from 30,000 to 120,939 individuals (SD: 28,137), likely due to treatment non-adherence or limited 

therapy access. Most alarmingly, XDR-TB cases (𝐼3) are predicted to surge from 575 to 104,651 individuals (SD: 

31,944), signaling an urgent public health crisis. While the reduction in DS-TB is encouraging, the dramatic increase 

in drug-resistant variants underscores the critical need for a more integrated approach, including improved 

diagnostics, enhanced treatment adherence strategies, and the development of new therapies. 

Furthermore, the dynamics within the exposed compartments are detailed in Figure 3(b), which shows a 

decrease in individuals exposed to each TB category. The number of exposed individuals for DS-TB (𝐸1) is projected 

to fall from 116,633,945 to 71,067,374 (SD: 13,363,925), indicating the effectiveness of interventions like 

vaccination. Those exposed to MDR-TB (𝐸2) decreased from 3,302,752 to 2,011,831 (SD: 378,605), demonstrating 

successful though complex prevention efforts. Similarly, individuals exposed to XDR-TB (𝐸3) declined from 63,303 

to 38,561 (SD: 7,257), a positive trend albeit at a slower rate. Overall, the decline across all exposed categories 

reflects successful prevention; however, the persistently high numbers, especially for DS-TB, coupled with the 

complexity of drug-resistant strains, demand more massive and sustainable interventions to ensure future TB control. 

Finally, Figure 3(c) depicts the dynamics of susceptible (𝑆), vaccinated (𝑉), and recovered (𝑅) populations. 

The susceptible individuals (𝑆) are projected to grow from 156,288,179 to 181,711,340, indicating that despite 

successful interventions, a large at-risk pool remains, necessitating ongoing prevention measures. The vaccinated 

individuals (𝑉) show substantial growth from 3,069,255 to 9,306,955, highlighting the success of vaccination 

programs in expanding protection. Meanwhile, the recovered compartment (𝑅) is forecast to increase dramatically 

from 552,566 to 32,828,936, reflecting TB's effective treatment and case management. These trends collectively 

indicate positive progress in TB control, though continued efforts are essential to expand vaccination coverage and 

ensure effective treatment reaches all at-risk groups. In this model, uncertainty intervals for each compartment are 

represented by the shadows around the line at each time point. The purpose of uncertainty intervals is to show the 

range of likely values for a prediction or measurement at each point in time, indicating the degree of doubt or 

variability in the data. 
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(a) 

 

 
(b) 

 

 
(c) 

 
Figure 3. (a) The number of individuals for all infectious individuals (𝑰𝟏 − 𝑰𝟑), (b) the number of individuals for all exposed 

individuals (𝑬𝟏 − 𝑬𝟑), (c) the number of individuals for susceptible, vaccinated individuals, and recovered individuals (𝑺, 

𝑽, 𝑹) 
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The SVE3I3R model is designed to capture the random fluctuations in epidemiological data that deterministic 

TB models cannot address. Simulation results from this model, detailed in Table 5, indicate a downward trend in the 

TB incidence rate. Specifically, the incidence rate is projected to decline from 387 cases per 100,000 population in 

2023 to 320 cases per 100,000 by 2030. Despite this positive trend, the projected figures remain critically high. As 

illustrated in Figure 4, the 2030 prediction of 320 cases per 100,000 population falls drastically short of the national 

elimination target of 65 cases per 100,000, as mandated by Indonesia's Presidential Regulation No. 67 of 2021. This 

significant gap indicates that the current rate of decline is insufficient to meet the national objective. 

 
Table 5. Estimation of TB incidence rate based on the SVE3I3R Model 

Year Total Population Total Infected Individuals Proportion in 100.000 

2023 281,000,000 1,090,000 387 

2024 283,357,928 1,034,191 364 

2025 285,735,825 995,591 348 

2026 288,133,508 970,718 336 

2027 290,550,790 956,613 329 

2028 292,987,817 950,778 324 

2029 295,444,478 951,116 321 

2030 297,920,867 955,872 320 

 

Consequently, achieving the 2030 target will require additional strategies, an intensification of existing 

intervention programs, and a strengthened commitment to TB prevention and treatment efforts beyond the current 

trajectory. 

 

 
Figure 4. Evaluation of TB incidence rates in Indonesia based on the SVE3I3R Model 

 

DISCUSSION 
This study employed a stochastic SVE3I3R model integrated with Gaussian noise to project TB incidence in 

Indonesia from 2023 to 2030. The results indicate a gradual decline in TB incidence, from 387 cases per 100,000 

population in 2023 to 320 per 100,000 by 2030. However, this projection falls significantly short of Indonesia’s 

national elimination target of 65 cases per 100,000, as outlined in Presidential Regulation No. 67 of 2021. This 

situation generally means that Indonesia may also be unable to meet the WHO's End TB 2030 target to drastically 

reduce the global tuberculosis epidemic, aiming for an 80% reduction in TB incidence and a 90% reduction in TB 
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deaths compared to 2015 levels, given that Indonesia is one of the countries contributing to the global burden of TB 

cases (37). Notably, while DS-TB cases are projected to decrease, MDR-TB and XDR-TB cases show alarming 

increases, highlighting a critical shift in the epidemiological burden. The model also captured substantial variability 

in exposed compartments due to Gaussian noise, reflecting real-world uncertainties in LTBI detection and reporting. 

The findings suggest that current TB control strategies, though effective in reducing DS-TB incidence, are 

insufficient to curb the rise of drug-resistant strains or achieve elimination by 2030. This aligns with previous studies 

emphasizing the growing threat of MDR/XDR-TB in high-burden settings like Indonesia. For instance, similar 

modelling efforts in Thailand, China, and India also stressed the need for enhanced detection and treatment adherence 

to reduce transmission (38–40). However, our stochastic approach offers a more realistic representation of TB 

dynamics by incorporating variability often overlooked in deterministic models. The significant underperformance 

relative to national targets may be attributed to systemic challenges such as fragmented healthcare services, diagnostic 

delays, and suboptimal treatment completion rates. (41). 

The SVE3I3R model developed in this study, with its integrated stochastic elements, provides a flexible 

framework that is potentially applicable to other high-burden TB settings sharing similar epidemiological profiles, 

such as India or the Philippines. The incorporation of Gaussian noise specifically enhances its relevance for contexts 

characterized by data uncertainty, underreporting, or variable surveillance systems. However, the model's specific 

projections are contingent on Indonesian parameters and should not be directly extrapolated. Successful application 

to other countries requires rigorous recalibration using local data on contextual factors including vaccination policies, 

demographic structure, and healthcare access to ensure the generation of meaningful and context specific insights. 

The study reinforces the value of stochastic modelling in infectious disease epidemiology, particularly for 

diseases with latent phases and complex transmission dynamics like TB. By integrating Gaussian noise into exposed 

compartments, the model better captures the unpredictability of LTBI progression and detection, challenging the 

deterministic assumption that all parameters are fixed and known. This contributes to theoretical advances in 

compartmental modelling, supporting probabilistic approaches for more robust public health forecasting. 

From methodological side, future research should expand this model to include socio-economic, behavioural, 

and environmental determinants of TB transmission. Integrating agent-based modelling or network-based approaches 

could further refine understanding of spatial and social heterogeneity in TB spread (42,43). Additionally, longitudinal 

studies are needed to validate the noise parameters and improve parameter estimation, especially for drug-resistant 

TB strains in high-burden settings like Indonesia (44). Research should also explore the impact of emerging 

interventions, such as new vaccines or shorter treatment regimens, within this stochastic framework. In detail, firstly, 

the impact of novel vaccine candidates or increased BCG coverage could be modeled by adjusting the vaccination 

rate (τ) and efficacy parameters, assessing their potential to accelerate progress toward elimination. Secondly, the 

effect of expanding active case-finding (ACF) strategies could be simulated by increasing the transition rates from 

exposed to infectious compartments (𝛽i), reflecting earlier detection and removal from the latent pool. Thirdly, 

integrating treatment adherence dynamics is crucial; this could be achieved by making treatment success rates (𝛿𝑖) a 

function of adherence support programs, allowing for the evaluation of interventions like video-observed therapy 

(VOT) or enhanced patient counseling. Implementing these extensions within the current stochastic framework would 

provide a powerful tool for comparing the cost-effectiveness and potential impact of various combination 

interventions against TB and drug-resistant TB in Indonesia. Furthermore, while stochastic models offer a more 

realistic representation by incorporating the inherent randomness in disease transmission. The choice of a numerical 

solver is critical for the validity of such stochastic simulations. Euler-Maruyama or Milstein schemes can be 

alternative numerical analysis beside RK4 to solve stochastic models for future research. Next, sensitivity analysis 

will be conducted in future work to apportion the variation in the stochastic model's outputs to their different sources 

of uncertainty. Lastly, the future work, the next study’s novelty is primarily contextual rather than methodological. 

Comparative assessment against deterministic baselines would clarify the incremental insight afforded by stochastic 

modelling and substantiate the claim of conceptual advancement. 

From a practical standpoint, our findings underscore the urgent need to strengthen MDR-TB/XDR-TB 

management through a multi-pronged strategy encompassing improved diagnostics, robust treatment adherence 

support, and rigorous infection control measures. To operationalise these recommendations, three key public health 

interventions are recommended by the WHO. One critical area is intensifying preventive measures. It aligns with the 
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strategic priority of active case finding and ensuring timely therapy. Furthermore, addressing the rise of drug 

resistance requires a direct focus on diagnostics (45). The second scenario modelled an expansion of rapid Drug 

Susceptibility Testing (DST) to reduce treatment delays. Together, these simulations provide quantitative support for 

a strategy that combines broad public health actions such as awareness campaigns to reduce stigma and encourage 

early care-seeking with targeted, high-impact clinical interventions. The data strongly suggest that immediate 

investment in scaling up both diagnostic and preventive services is essential to alter Indonesia's TB trajectory and 

accelerate progress toward elimination goals (46). Last, public health campaigns must also address misconceptions 

about TB and reduce stigma to encourage early care-seeking behaviour (47,48). 

The significant gap between projected incidence and national targets calls for intensified policy action. 

Policymakers should increase funding for TB programs, enhance integration of TB services with primary healthcare, 

and expand access to molecular diagnostics and second-line drugs (49–51). Regulatory support for faster approval of 

new treatments and vaccines is also critical (52,53). Furthermore, inter-sectoral collaboration involving education, 

social welfare, and urban planning departments may help address the social determinants of TB (54,55). 

This study has several limitations. First, parameter estimates were derived from literature and fitted data, 

which may not fully capture local heterogeneity. Second, the model assumed homogeneous mixing, ignoring spatial 

and social network effects. Third, Gaussian noise was applied only to exposed compartments, potentially 

underestimating variability in other states. Lastly, the model did not incorporate socio-economic factors or health 

system constraints, which could influence TB transmission and control. These limitations may introduce bias towards 

overoptimistic projections, particularly regarding the decline in DS-TB. 

 

CONCLUSION 
In conclusion, this study demonstrates that Indonesia is unlikely to achieve its TB elimination target by 2030, 

based on current strategies. The stochastic SVE3I3R model provided a realistic projection of TB trends, highlighting 

the persistent challenge of drug-resistant TB and the need for more aggressive interventions. Integrating Gaussian 

noise enhanced the model's ability to reflect real-world uncertainties, offering a valuable tool for future 

epidemiological assessments. These findings underscore the importance of reinforcing TB control efforts through 

research, policy, and practice to move closer to the goal of TB elimination. More effective health interventions, such 

as increased vaccination coverage, early detection, and better treatment, are urgently needed to approach the desired 

target. 
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