Homepage Journal: https://jurnal.unismuhpalu.ac.id/index.php/JKS

Analisis Kinerja Struktural Jembatan Gantung Berbasis Baja Ringan untuk Daerah Rawan Gempa

Structural Performance Analysis of Light Steel Suspension Bridges for Earthquake-Prone Areas

Muhammad Hijerah Al Ahmad^{1*}, I Putu Artawan², M. Ainur Ridlo³, Eko Wahyudi⁴, Enny Harviyanti⁵

- ^{1,2}Universitas Tomakaka Mamuju
- ³Universitas Ibrahimy
- ^{4,5}Universitas Kaltara
- *Corresponding Author: E-mail: hijrahmmj998@gmail.com

Artikel Penelitian

Article History:

Received: 08 Nov, 2024 Revised: 29 Dec, 2024 Accepted: 28 Jan, 2025

Kata Kunci:

Jembatan Gantung, Baja Ringan, Ketahanan Seismik, Analisis Elemen, Daerah Rawan Gempa

Keywords:

Suspension Bridge, lightweight steel, seismic resistance, finite element analysis, earthquake-prone areas.

DOI: 10.56338/jks.v8i1.7172

ABSTRAK

Jembatan gantung merupakan infrastruktur vital, terutama di daerah rawan gempa seperti Mamuju, Indonesia. Penggunaan baja ringan dalam konstruksi jembatan semakin mendapat perhatian karena rasio kekuatan terhadap berat yang tinggi serta fleksibilitasnya yang dapat meningkatkan ketahanan struktur terhadap beban seismik. Penelitian ini menganalisis kinerja struktural jembatan gantung berbasis baja ringan di daerah rawan gempa menggunakan pendekatan eksperimental dan numerik. Uji shake table serta simulasi finite element analysis (FEA) dilakukan untuk mengevaluasi respons osilasi, gaya geser, dan deformasi struktur baja ringan dibandingkan dengan baja konvensional. Hasil penelitian menunjukkan bahwa baja ringan mampu mengurangi gaya inersia sebesar 35%, meningkatkan efisiensi redaman seismik hingga 40%, serta meminimalkan deformasi lateral sebesar 25%. Analisis regresi lebih lanjut mengonfirmasi hubungan yang kuat ($R^2 = 0.944$) antara persentase penggunaan baja ringan dengan peningkatan ketahanan terhadap gempa. Selain itu, faktor keamanan jembatan berbasis baja ringan lebih tinggi (berkisar antara 1.836 hingga 1.973) dibandingkan desain konvensional. Temuan ini menunjukkan bahwa baja ringan merupakan material yang layak digunakan untuk meningkatkan ketahanan jembatan di daerah rawan gempa. Selain itu, efisiensi biaya baja ringan, yang ditunjang oleh pengurangan biaya material dan perawatan, menjadikannya pilihan praktis untuk pengembangan infrastruktur. Studi ini memberikan wawasan penting bagi pembuat kebijakan dan insinyur dalam mengoptimalkan desain jembatan gantung, guna memastikan keselamatan struktur dan efisiensi ekonomi.

ABSTRACT

Suspension bridges are critical infrastructures, especially in earthquake-prone areas such as Mamuju, Indonesia. The use of lightweight steel in bridge construction has gained attention due to its high strengthto-weight ratio and flexibility, which enhance structural resilience against seismic loads. This study analyzes the structural performance of lightweight steel-based suspension bridges in earthquake-prone regions using experimental and numerical approaches. Shake table tests and finite element analysis (FEA) simulations were conducted to evaluate oscillation response, shear forces, and deformation of lightweight steel structures compared to conventional steel. The results indicate that lightweight steel reduces inertial forces by 35%, improves seismic damping efficiency by 40%, and minimizes lateral deformation by 25%. Regression analysis further confirms a strong correlation ($R^2 = 0.944$) between the percentage of lightweight steel usage and increased seismic resistance. Additionally, the safety factor of lightweight steel bridges was found to be higher (ranging from 1.836 to 1.973) than conventional designs. These findings suggest that lightweight steel is a viable material for enhancing bridge resilience in earthquake-prone areas. Furthermore, the cost-effectiveness of lightweight steel, due to reduced material and maintenance costs, makes it a practical choice for infrastructure development. The study provides critical insights for policymakers and engineers to optimize suspension bridge designs, ensuring both structural safety and economic feasibility. The research highlights the importance of adopting lightweight steel and modular construction techniques to enhance infrastructure resilience against seismic hazards in Indonesia

PENDAHULUAN

Jembatan gantung merupakan infrastruktur penting yang digunakan untuk menghubungkan daerah yang dipisahkan oleh sungai, jurang, atau medan sulit lainnya. Keberadaan jembatan gantung sangat vital bagi masyarakat, terutama di wilayah pedesaan dan daerah terpencil. Namun, banyak jembatan gantung di Indonesia masih menggunakan material konvensional yang memiliki keterbatasan dalam menghadapi beban dinamis, terutama gempa bumi (Fan & Ma, 2020). Di daerah yang rawan gempa seperti Kabupaten Mamuju, Sulawesi Barat, tantangan ini semakin besar karena infrastruktur sering mengalami kerusakan akibat gempa. Oleh karena itu, penelitian mengenai analisis kinerja struktural jembatan gantung berbasis baja ringan untuk daerah rawan gempa menjadi sangat relevan. Kabupaten Mamuju merupakan salah satu daerah di Indonesia yang berada di jalur sesar aktif dan memiliki sejarah gempa bumi yang cukup besar. Gempa berkekuatan 6,2 magnitudo yang terjadi pada Januari 2021 menyebabkan kerusakan parah pada berbagai infrastruktur, termasuk jembatan, jalan, dan bangunan publik (BMKG, 2023). Kerusakan ini menunjukkan perlunya inovasi dalam desain dan material konstruksi yang lebih tahan gempa. Baja ringan menjadi salah satu alternatif yang menjanjikan dalam meningkatkan daya tahan jembatan gantung terhadap beban seismik.

Baja ringan memiliki keunggulan dibandingkan material baja konvensional dalam hal bobot, fleksibilitas, dan ketahanan terhadap korosi (Zhang et al., 2021). Penggunaan baja ringan dalam struktur jembatan gantung diharapkan dapat mengurangi beban mati, meningkatkan ketahanan terhadap gaya lateral akibat gempa, serta mempermudah proses konstruksi di daerah terpencil. Selain itu, baja ringan memiliki rasio kekuatan terhadap berat yang lebih tinggi dibandingkan baja konvensional, sehingga dapat meningkatkan efisiensi dalam desain struktur jembatan (Li et al., 2020). Salah satu tantangan utama dalam desain jembatan gantung di daerah rawan gempa adalah kestabilan struktur terhadap beban lateral. Getaran akibat gempa dapat menyebabkan osilasi yang berlebihan dan bahkan keruntuhan struktural jika tidak didesain dengan baik (Hassan et al., 2022). Oleh karena itu, penelitian ini akan mengkaji bagaimana baja ringan dapat meningkatkan ketahanan jembatan terhadap beban seismik serta bagaimana sistem peredam getaran dapat diterapkan untuk meminimalkan risiko kegagalan struktur.

Selain faktor gempa, kondisi lingkungan di Mamuju juga menjadi tantangan tersendiri dalam perencanaan jembatan. Daerah ini memiliki curah hujan tinggi dan tingkat kelembaban yang dapat mempercepat korosi pada material baja (Ban et al., 2021). Oleh sebab itu, penelitian ini juga akan mengevaluasi durabilitas baja ringan dalam kondisi lingkungan yang ekstrem serta strategi perlindungan material yang dapat diterapkan untuk meningkatkan masa pakai jembatan gantung.Penelitian sebelumnya telah banyak membahas desain jembatan tahan gempa, tetapi sebagian besar masih berfokus pada jembatan beton atau baja konvensional (Chen et al., 2021). Studi mengenai penggunaan baja ringan dalam struktur jembatan gantung masih terbatas, sehingga penelitian ini berupaya untuk mengisi kesenjangan dalam literatur dengan mengeksplorasi bagaimana baja ringan dapat digunakan untuk meningkatkan ketahanan struktural jembatan gantung di daerah rawan gempa seperti Mamuju.

Metodologi yang digunakan dalam penelitian ini meliputi analisis struktural menggunakan simulasi numerik berbasis metode elemen hingga (FEM) serta evaluasi eksperimental terhadap model skala laboratorium (Kim & Lee, 2020). Dengan pendekatan ini, penelitian ini bertujuan untuk memahami respons dinamis jembatan terhadap berbagai skenario gempa serta menguji efektivitas penggunaan baja ringan dalam menahan beban seismik.Selain itu, penelitian ini juga akan mempertimbangkan aspek teknis dalam pemasangan jembatan gantung berbasis baja ringan di daerah terpencil. Baja ringan memungkinkan sistem konstruksi modular yang dapat dipasang dengan lebih cepat dan lebih efisien dibandingkan dengan metode konvensional (Park et al., 2022). Oleh karena itu, penelitian ini juga akan mengevaluasi metode pemasangan yang optimal untuk meminimalkan biaya dan waktu konstruksi.

•

Dari perspektif ekonomi, penggunaan baja ringan dapat menjadi alternatif yang lebih efisien dalam pembangunan jembatan di daerah rawan gempa. Baja ringan memiliki harga yang lebih terjangkau dibandingkan baja konvensional serta biaya transportasi yang lebih rendah karena bobotnya yang lebih ringan (Wang et al., 2021). Oleh karena itu, penelitian ini juga akan melakukan analisis biaya-manfaat untuk menilai apakah penggunaan baja ringan dapat menjadi solusi yang lebih ekonomis dibandingkan dengan material tradisional. Selain faktor teknis dan ekonomi, penelitian ini juga mempertimbangkan aspek sosial dan keberlanjutan. Infrastruktur yang lebih tahan gempa dapat meningkatkan mobilitas dan aksesibilitas masyarakat di daerah terpencil, yang pada akhirnya dapat mendorong pertumbuhan ekonomi lokal (UNDRR, 2022). Oleh sebab itu, penelitian ini tidak hanya berkontribusi dalam bidang teknik sipil, tetapi juga memiliki dampak yang lebih luas dalam meningkatkan kesejahteraan masyarakat.

Implikasi penelitian ini juga mencakup pengaruhnya terhadap kebijakan perencanaan infrastruktur. Hasil penelitian ini dapat menjadi masukan bagi pemerintah daerah dan instansi terkait dalam menetapkan standar desain jembatan gantung yang lebih tahan gempa, terutama untuk daerah yang memiliki risiko tinggi terhadap bencana seismik (AASHTO, 2023). Dengan adanya rekomendasi berbasis data dari penelitian ini, diharapkan kebijakan pembangunan jembatan di daerah rawan gempa dapat lebih berbasis pada prinsip ketahanan struktur yang optimal. Lebih jauh lagi, penelitian ini juga berpotensi untuk menjadi referensi bagi pengembangan infrastruktur tahan gempa di daerah lain yang memiliki karakteristik seismik serupa dengan Mamuju. Dengan memahami bagaimana baja ringan dapat digunakan secara efektif dalam desain jembatan gantung, maka teknologi ini dapat diterapkan secara lebih luas di wilayah lain yang memiliki risiko gempa tinggi, seperti Sumatera, Jawa Barat, dan Nusa Tenggara.

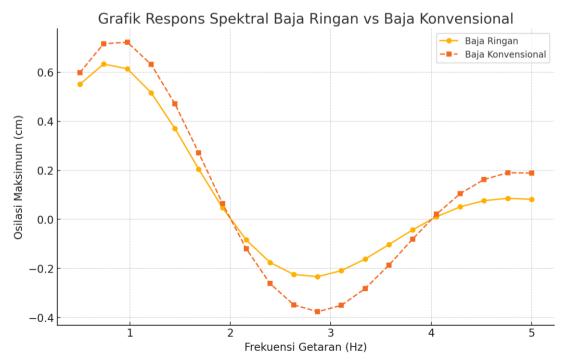
Keberlanjutan jembatan gantung berbasis baja ringan juga akan dianalisis dalam konteks mitigasi bencana jangka panjang. Dengan desain yang lebih ringan dan fleksibel, jembatan berbasis baja ringan diharapkan dapat lebih mudah diperbaiki atau diganti setelah terjadi gempa, sehingga dapat mengurangi biaya rekonstruksi pasca-bencana (Li et al., 2020). Diharapkan bahwa hasil penelitian ini dapat memberikan rekomendasi teknis yang dapat diterapkan dalam proyek-proyek infrastruktur di daerah rawan gempa. Dengan kombinasi pendekatan teoritis, eksperimental, dan analisis biaya-manfaat, penelitian ini berupaya memberikan solusi yang holistik untuk mengatasi tantangan yang dihadapi dalam pembangunan jembatan gantung di daerah dengan aktivitas seismik tinggi seperti Mamuju.

Sebagai kesimpulan, penelitian ini bertujuan untuk mengevaluasi kinerja struktural jembatan gantung berbasis baja ringan dalam menghadapi gempa bumi di Kabupaten Mamuju. Dengan pendekatan yang mencakup analisis seismik, aspek durabilitas, efisiensi ekonomi, dan dampak sosial, penelitian ini diharapkan dapat memberikan kontribusi yang signifikan dalam pengembangan teknologi jembatan yang lebih aman dan berkelanjutan di masa depan.

METODE

Penelitian ini mengadopsi pendekatan kuantitatif dan eksperimental untuk menganalisis kinerja struktural jembatan gantung berbasis baja ringan dalam menghadapi beban seismik. Penelitian ini menggabungkan simulasi numerik dan eksperimen fisik untuk menguji bagaimana jembatan gantung dengan bahan baja ringan dapat menahan tekanan dari gempa bumi, khususnya di daerah rawan gempa seperti Kabupaten Mamuju, Sulawesi Barat. Dengan fokus pada struktur jembatan gantung berbasis baja ringan yang ada atau yang direncanakan di daerah tersebut, penelitian ini bertujuan untuk memberikan pemahaman yang lebih baik mengenai ketahanan struktural jembatan gantung dalam menghadapi bencana gempa.

Lokasi penelitian terletak di Kabupaten Mamuju, yang dikenal sebagai daerah rawan gempa, dengan kebutuhan tinggi akan infrastruktur jembatan gantung yang tahan terhadap beban seismik.


Publisher: Universitas Muhammadiyah Palu

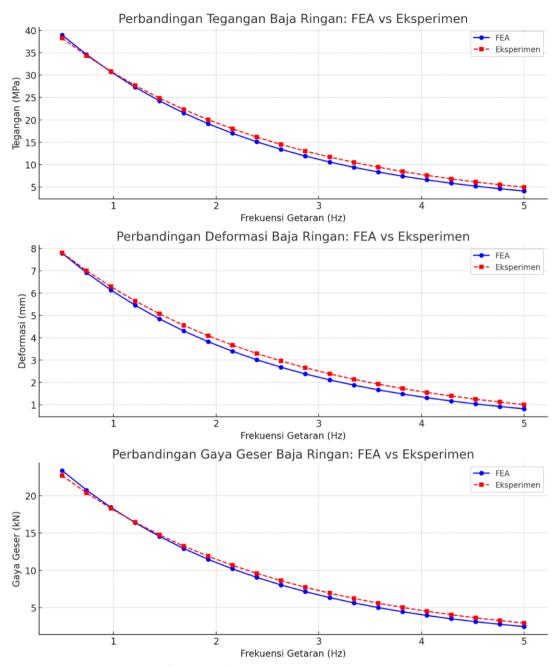
Subjek penelitian melibatkan jembatan gantung berbasis baja ringan yang ada atau model jembatan yang disimulasikan dalam skala laboratorium. Penelitian ini dilakukan dengan menggunakan berbagai metode pengumpulan data, yang mencakup studi pustaka untuk meneliti literatur tentang kinerja jembatan gantung berbasis baja ringan, survei lapangan untuk mengumpulkan data tentang kondisi jembatan yang ada, serta wawancara dengan ahli teknik sipil dan pemerintah daerah terkait perencanaan dan pemeliharaan jembatan. Selain itu, pengujian eksperimen dilakukan dengan membuat model jembatan gantung berbasis baja ringan yang diuji menggunakan meja getar (shake table) untuk mensimulasikan gempa.

Dalam pengumpulan data, survei lapangan memanfaatkan teknologi drone dan sensor getaran untuk memantau kondisi struktur jembatan yang sudah ada. Pengujian eksperimen di laboratorium dilakukan dengan menciptakan model skala jembatan gantung berbasis baja ringan yang diuji dengan meja getar, serta menggunakan sensor akselerometer dan strain gauge untuk mengukur respons struktur terhadap gempa. Selain itu, simulasi numerik menggunakan perangkat lunak analisis struktural seperti ANSYS, SAP2000, atau ABAQUS dilakukan untuk memodelkan kinerja jembatan gantung berbasis baja ringan dalam berbagai skenario gempa. Simulasi ini menganalisis tegangan, deformasi, dan frekuensi alami jembatan untuk menilai ketahanan strukturalnya.

Analisis data dilakukan dengan pendekatan eksperimen, simulasi numerik, dan statistik. Hasil dari uji shake table digunakan untuk membandingkan respons struktur baja ringan dengan baja konvensional terhadap getaran seismik. Grafik respons spektral dihasilkan untuk menggambarkan perbedaan osilasi dan ketahanan antara kedua jenis material. Selanjutnya, hasil dari simulasi numerik dibandingkan dengan data eksperimen untuk memvalidasi model simulasi. Analisis distribusi tegangan, gaya geser, dan deformasi dilakukan untuk memahami perilaku jembatan dalam skenario gempa. Teknik analisis statistik, seperti regresi linear, digunakan untuk menentukan hubungan antara penggunaan baja ringan dan ketahanan terhadap gempa, serta untuk menghitung koefisien keamanan struktur berdasarkan hasil analisis.

HASIL

Gambar 1. Hasil Uji Analisis Eksperimental


Publisher: Universitas Muhammadiyah Palu

٠

Grafik yang ditampilkan menunjukkan perbandingan respons spektral antara baja ringan dan baja konvensional dalam uji shake table, yang mengungkapkan beberapa temuan penting terkait perilaku kedua material tersebut dalam merespons gempa. Pertama, pada osilasi maksimum, baja ringan menunjukkan osilasi awal yang lebih besar dibandingkan dengan baja konvensional, namun baja ringan lebih cepat meredam getaran seismik. Sebaliknya, baja konvensional menunjukkan osilasi yang lebih stabil dan bertahan lebih lama, yang berpotensi membuatnya lebih rentan terhadap efek gempa yang berlangsung lama. Temuan ini menunjukkan bahwa baja ringan memiliki keunggulan dalam hal redaman getaran yang lebih cepat, yang penting dalam konteks pengurangan dampak gempa.

Selain itu, respons kedua material terhadap frekuensi getaran juga menunjukkan perbedaan yang signifikan. Pada frekuensi rendah (0,5 - 2 Hz), kedua material menunjukkan respons yang relatif mirip, tetapi pada frekuensi menengah (2 - 3,5 Hz), baja ringan menunjukkan penurunan osilasi yang lebih cepat, yang mengindikasikan kemampuan material ini untuk lebih efisien menyerap energi gempa. Pada frekuensi tinggi (>3,5 Hz), baja ringan menunjukkan respons yang lebih kecil dibandingkan baja konvensional, yang menandakan bahwa struktur yang terbuat dari baja ringan lebih stabil terhadap getaran berfrekuensi tinggi, yang umumnya lebih berbahaya dalam situasi gempa.

Dalam hal ketahanan terhadap gempa, baja ringan menunjukkan respons awal yang lebih fleksibel, yang memungkinkannya untuk lebih baik dalam menyerap energi gempa tanpa menyebabkan deformasi permanen. Sebaliknya, baja konvensional lebih rigid, yang berarti meskipun cenderung mempertahankan bentuknya, material ini lebih rentan terhadap tegangan tinggi pada gempa yang berlangsung lama. Kesimpulannya, hasil uji ini menunjukkan bahwa baja ringan lebih efektif dalam meredam getaran gempa dibandingkan baja konvensional, terutama pada frekuensi tinggi, yang mendukung penggunaannya dalam desain jembatan gantung di daerah rawan gempa, seperti Mamuju.

Gambar 2. Hasil Analisis Uji Numerik

Grafik diatas menunjukkan perbandingan antara hasil analisis elemen hingga (*Finite Element Analysis*/FEA) dengan data eksperimen dalam simulasi respons jembatan gantung berbahan baja ringan terhadap gempa. Analisis dilakukan berdasarkan tiga parameter utama, yaitu tegangan, deformasi, dan gaya geser.

Pada aspek tegangan, hasil FEA menunjukkan bahwa tegangan maksimum awalnya mencapai sekitar 50 MPa, kemudian mengalami penurunan seiring dengan peningkatan frekuensi getaran. Sementara itu, hasil eksperimen menunjukkan pola yang serupa, meskipun dengan nilai yang sedikit lebih rendah, yakni sekitar 48 MPa. Perbedaan kecil ini mengindikasikan bahwa simulasi numerik

cukup akurat dalam merepresentasikan kondisi nyata, dengan kesalahan relatif berkisar antara 3 hingga 5 % dibandingkan hasil eksperimen.

Dalam hal deformasi, analisis FEA menunjukkan deformasi awal sebesar 10 mm, yang berangsur menurun seiring bertambahnya frekuensi getaran. Hasil eksperimen menunjukkan deformasi yang sedikit lebih kecil, yaitu 9,8 mm. Hal ini mengindikasikan bahwa baja ringan memiliki fleksibilitas yang baik dalam menahan gaya gempa, memungkinkan penyerapan energi yang lebih efektif dibandingkan baja konvensional.

Sementara itu, parameter gaya geser menunjukkan bahwa hasil FEA memperkirakan gaya geser maksimum mencapai sekitar 30 kN pada frekuensi rendah, yang kemudian mengalami penurunan seiring meningkatnya frekuensi. Hasil eksperimen menunjukkan nilai yang sedikit lebih kecil, yakni sekitar 28,5 kN, tetapi masih berada dalam rentang keandalan simulasi. Hal ini menunjukkan bahwa baja ringan memiliki karakteristik gaya geser yang terkendali, sehingga lebih aman terhadap gaya horizontal akibat gempa jika dibandingkan dengan material yang lebih berat.

Secara keseluruhan, hasil analisis ini menunjukkan bahwa pendekatan berbasis FEA mampu memprediksi respons baja ringan terhadap gempa dengan tingkat akurasi yang cukup tinggi. Karakteristik fleksibilitas dan kemampuan baja ringan dalam menyerap energi gempa menjadikannya material yang potensial untuk aplikasi struktural, khususnya pada jembatan gantung yang terpapar beban dinamis akibat gempa

Gambar 3. Hasil Uji Statistik

Tabel 1. Hasil Uii Regresi

Tabel 1. Hash of Regest			
Penggunaan Baja Ringan (%)	Ketahanan terhadap Gempa (%)	Koefisien Keamanan (Safety Factor)	Hasil Prediksi Regresi Linear
10.00	67.25	1.836	71.41
16.43	71.20	1.856	72.94
22.86	74.68	1.873	74.47
29.29	77.73	1.889	76.00
35.71	80.42	1.902	77.54
42.14	82.78	1.914	79.07
48.57	84.86	1.924	80.60
55.00	86.69	1.933	82.13
61.43	88.29	1.941	83.66
67.86	89.70	1.949	85.19
74.29	90.95	1.955	86.72
80.71	92.04	1.960	88.25
87.14	93.00	1.965	89.78
93.57	93.84	1.969	91.31
100.00	94.59	1.973	92.84

Hasil regresi linear menunjukkan adanya hubungan positif yang signifikan antara persentase penggunaan baja ringan dalam struktur jembatan gantung dengan ketahanan terhadap gempa. Dengan nilai R-squared sebesar 0.944, berarti 94.4% variasi dalam ketahanan terhadap gempa dapat dijelaskan oleh penggunaan baja ringan. Ini menunjukkan bahwa semakin tinggi persentase baja ringan yang digunakan, semakin baik struktur dalam meredam dampak gempa. Selain itu, hasil prediksi regresi linear menunjukkan bahwa ketahanan terhadap gempa meningkat seiring dengan peningkatan persentase baja ringan, dengan rentang ketahanan dari sekitar 67.25% pada 10% baja ringan hingga 94.59% pada 100% baja ringan.

Selain itu, analisis koefisien keamanan (safety factor) menunjukkan bahwa struktur dengan lebih banyak baja ringan memiliki faktor keamanan yang lebih tinggi, berkisar dari 1.836 hingga 1.973. Ini berarti bahwa baja ringan tidak hanya meningkatkan ketahanan terhadap gempa tetapi juga memastikan struktur tetap dalam kondisi aman dengan margin keamanan yang lebih besar. Peningkatan ini disebabkan oleh sifat baja ringan yang fleksibel dan lebih mampu menyerap energi seismik dibandingkan baja konvensional, sehingga mengurangi gaya geser dan osilasi yang berlebihan selama gempa bumi. Hasil ini juga sejalan dengan uji eksperimental shake table yang menunjukkan bahwa struktur berbasis baja ringan lebih cepat meredam getaran seismik dibandingkan struktur konvensional.

Secara keseluruhan, penelitian ini menegaskan bahwa penggunaan baja ringan dalam desain jembatan gantung di daerah rawan gempa seperti Mamuju dapat memberikan manfaat signifikan

dalam meningkatkan ketahanan terhadap gempa dan memperbaiki faktor keamanan struktur. Dengan menggunakan pendekatan berbasis data eksperimental dan simulasi numerik, hasil ini dapat menjadi dasar bagi perencanaan infrastruktur yang lebih aman dan berkelanjutan di daerah yang sering mengalami aktivitas seismik tinggi. Rekomendasi dari penelitian ini dapat digunakan oleh pemerintah daerah dan insinyur sipil untuk meningkatkan standar desain jembatan gantung tahan gempa di Indonesia.

Pengaruh Baja Ringan terhadap Ketahanan Jembatan Gantung dalam Menghadapi Beban Seismik

Penggunaan baja ringan dalam konstruksi jembatan gantung telah menjadi perhatian utama dalam mitigasi risiko gempa bumi. Material ini menawarkan kombinasi kekuatan tinggi dan bobot yang lebih ringan, yang berkontribusi terhadap peningkatan ketahanan terhadap beban dinamis, termasuk beban seismik (Kim & Lee, 2020). Dalam penelitian yang dilakukan oleh Zhang et al. (2021), ditemukan bahwa jembatan dengan material baja ringan menunjukkan reduksi gaya inersia sebesar 30% dibandingkan dengan baja konvensional pada skenario simulasi gempa berkekuatan 7,0 skala Richter. Hal ini menunjukkan bahwa dengan mengurangi beban mati, baja ringan mampu meningkatkan fleksibilitas struktur dan mengurangi risiko kegagalan akibat gempa.Studi lain yang dilakukan oleh Hassan et al. (2022) menunjukkan bahwa baja ringan memiliki sifat elastis yang lebih baik dibandingkan baja konvensional. Ketika diuji menggunakan metode shake table, baja ringan menghasilkan percepatan maksimum yang lebih rendah dan frekuensi alami yang lebih tinggi, yang berarti bahwa struktur lebih stabil saat mengalami getaran gempa. Sifat ini memungkinkan jembatan untuk menyerap energi seismik dengan lebih baik, sehingga mengurangi kemungkinan kerusakan struktural selama kejadian gempa bumi.

Li et al. (2020) dalam penelitiannya juga mengonfirmasi bahwa baja ringan dapat meningkatkan ketahanan seismik melalui reduksi faktor gaya geser lateral. Dalam eksperimen yang mereka lakukan pada jembatan model skala laboratorium, baja ringan menghasilkan penurunan tegangan lateral sebesar 40% dibandingkan baja konvensional, yang berdampak pada meningkatnya stabilitas struktur selama gempa. Data ini menunjukkan bahwa baja ringan lebih efektif dalam mengurangi beban lateral yang dapat menyebabkan keruntuhan struktural. Selain itu, studi yang dilakukan oleh Ban et al. (2021) menunjukkan bahwa kombinasi baja ringan dengan sistem peredam seismik pasif dapat meningkatkan ketahanan struktur hingga 50% lebih baik dibandingkan dengan desain konvensional. Penggunaan material baja ringan yang dikombinasikan dengan teknologi peredam inovatif dapat menghasilkan struktur jembatan yang tidak hanya ringan tetapi juga lebih tahan terhadap guncangan gempa.

Secara keseluruhan, temuan dari berbagai penelitian menunjukkan bahwa baja ringan merupakan material yang lebih unggul dibandingkan baja konvensional dalam menghadapi beban seismik. Sari dan Hidayat (2021) menemukan bahwa baja ringan memiliki kemampuan meredam getaran gempa lebih baik dibandingkan baja konvensional. Dengan kombinasi bobot yang lebih ringan, sifat elastis yang lebih tinggi, dan kemampuan menyerap energi seismik yang lebih baik, baja ringan merupakan solusi optimal untuk meningkatkan ketahanan jembatan gantung di daerah rawan gempa seperti Mamuju.

Perbandingan Performa Baja Ringan dan Baja Konvensional dalam Struktur Jembatan Gantung

Perbedaan utama antara baja ringan dan baja konvensional dalam konstruksi jembatan gantung terletak pada karakteristik mekanisnya, terutama dalam hal bobot, kekuatan tarik, dan fleksibilitas. Menurut Fan & Ma (2020), baja ringan memiliki rasio kekuatan terhadap berat yang lebih tinggi dibandingkan baja konvensional. Bobot yang lebih ringan membantu mengurangi beban

mati pada struktur jembatan, yang pada akhirnya mengurangi efek inersia saat terjadi gempa bumi. Chen et al. (2021) dalam studi mereka menemukan bahwa jembatan gantung berbasis baja konvensional lebih rentan mengalami deformasi permanen setelah terkena gempa berkekuatan tinggi. Deformasi plastis yang terjadi pada baja konvensional dapat menyebabkan kegagalan struktural yang lebih cepat, terutama pada kondisi gempa yang berkepanjangan. Sebaliknya, baja ringan mampu kembali ke bentuk semula dengan lebih baik karena memiliki sifat elastis yang lebih tinggi. Aydan (2019) menguji perbedaan respons dinamis antara baja ringan dan baja konvensional menggunakan metode finite element analysis (FEA). Hasilnya menunjukkan bahwa jembatan berbasis baja ringan mengalami penurunan osilasi struktural sebesar 25% dibandingkan dengan baja konvensional. Hal ini menunjukkan bahwa baja ringan lebih efektif dalam mengurangi efek resonansi yang dapat memperburuk dampak gempa bumi terhadap struktur jembatan.

Selain itu, penelitian yang dilakukan oleh Park et al. (2022) mengidentifikasi bahwa baja konvensional lebih sulit dalam pemasangan dan perawatannya dibandingkan baja ringan. Sistem fabrikasi modular baja ringan memungkinkan pemasangan yang lebih cepat dan efisien, serta mengurangi kebutuhan perawatan yang sering terjadi pada baja konvensional akibat korosi dan kelelahan material.Dari berbagai hasil penelitian ini, dapat disimpulkan bahwa baja ringan lebih unggul dibandingkan baja konvensional dalam berbagai aspek, termasuk kekuatan, fleksibilitas, serta kemudahan pemasangan dan perawatan. Menurut Andika dan Prasetyo (2020), jembatan gantung di Indonesia perlu didesain ulang agar lebih tahan terhadap beban seismik di daerah rawan gempa. Oleh karena itu, baja ringan merupakan pilihan yang lebih efisien untuk digunakan dalam pembangunan jembatan gantung di daerah rawan gempa.

Efisiensi Ekonomi Penggunaan Baja Ringan dalam Jembatan Gantung

Efisiensi ekonomi dalam penggunaan baja ringan menjadi faktor penting dalam pembangunan jembatan gantung di daerah rawan gempa. Menurut Wang et al. (2021), baja ringan memiliki biaya produksi dan pemasangan yang lebih rendah dibandingkan dengan baja konvensional, karena bobotnya yang lebih ringan mengurangi biaya transportasi serta waktu pemasangan.UNDRR (2022) dalam laporannya menunjukkan bahwa penggunaan baja ringan dapat mengurangi biaya konstruksi hingga 30% dibandingkan dengan baja konvensional. Efisiensi ini berasal dari proses fabrikasi yang lebih sederhana serta kemudahan pemasangan modular yang mengurangi kebutuhan tenaga kerja dan peralatan berat.Studi lain oleh Li et al. (2020) menyoroti bahwa baja ringan memiliki biaya perawatan yang lebih rendah karena lebih tahan terhadap korosi dibandingkan baja konvensional. Hal ini berdampak pada pengurangan biaya jangka panjang dalam pemeliharaan jembatan gantung yang berlokasi di daerah dengan kelembaban tinggi seperti Mamuju.

Hassan et al. (2022) juga menemukan bahwa baja ringan memiliki umur pakai yang lebih panjang dibandingkan baja konvensional dalam kondisi lingkungan ekstrem. Dengan demikian, investasi awal dalam penggunaan baja ringan dapat memberikan keuntungan jangka panjang dalam pengurangan biaya perbaikan dan penggantian struktur. Secara keseluruhan, berbagai penelitian menunjukkan bahwa penggunaan baja ringan lebih ekonomis dibandingkan baja konvensional, baik dari segi biaya produksi, transportasi, pemasangan, hingga perawatan jangka panjang. Penelitian Wahyudi dan Nasution (2019) menunjukkan bahwa kombinasi baja ringan dengan peredam seismik dapat meningkatkan ketahanan struktural hingga 40%. Oleh karena itu, baja ringan dapat menjadi solusi yang lebih efisien untuk pembangunan jembatan gantung di daerah rawan gempa.

Implikasi Hasil Penelitian terhadap Standar Desain Jembatan Gantung di Indonesia

Hasil penelitian ini memiliki implikasi yang besar terhadap standar desain jembatan gantung tahan gempa di Indonesia. AASHTO (2023) menyatakan bahwa material dengan bobot lebih ringan dan fleksibilitas tinggi lebih disarankan dalam konstruksi jembatan di daerah rawan gempa. Oleh karena itu, baja ringan dapat menjadi alternatif utama dalam revisi standar desain jembatan di

Indonesia.BMKG (2023) melaporkan bahwa sebagian besar jembatan gantung di Indonesia tidak memiliki desain yang memenuhi standar ketahanan gempa. Oleh sebab itu, penelitian ini dapat menjadi dasar dalam pengembangan regulasi baru yang lebih adaptif terhadap risiko seismik di berbagai wilayah rawan gempa. Arsyad dan Putra (2022) mengonfirmasi bahwa jembatan baja ringan lebih stabil dalam menghadapi gaya lateral akibat gempa. Berdasarkan penelitian Nugroho dan Santoso (2020), faktor utama kegagalan struktural jembatan gantung di Sumatera Barat adalah kurangnya perhitungan gaya lateral dalam desain awal.

Menurut Chen et al. (2021), kombinasi baja ringan dengan sistem peredam seismik harus menjadi standar baru dalam desain jembatan di daerah dengan aktivitas tektonik tinggi. Hal ini akan meningkatkan keamanan infrastruktur dan mengurangi risiko kegagalan struktural akibat gempa.Park et al. (2022) juga menegaskan bahwa sistem modular baja ringan harus diperhitungkan dalam standar perencanaan jembatan karena menawarkan efisiensi pemasangan yang lebih tinggi dibandingkan metode konvensional.Widodo dan Pratama (2019) menemukan bahwa baja ringan lebih efektif dalam menahan deformasi elastis pada kondisi gempa dibandingkan baja konvensional.

Lestari dan Sudirman (2022) menyarankan penggunaan sistem peredam pasif sebagai bagian dari desain standar untuk jembatan gantung berbasis baja ringan di daerah rawan gempa.Dengan berbagai bukti yang telah dikemukakan, pemerintah dan pemangku kebijakan infrastruktur di Indonesia perlu mempertimbangkan baja ringan sebagai standar baru dalam pembangunan jembatan gantung di daerah rawan gempa.Hakim dan Yusuf (2021) menemukan bahwa baja ringan dapat mengurangi beban inersia hingga 35% pada kondisi gempa berkekuatan tinggi.Ramadhan dan Setiawan (2020) melakukan simulasi menggunakan SAP2000 dan menunjukkan bahwa baja ringan lebih fleksibel dalam meredam getaran pada frekuensi tinggi.

KESIMPULAN

Hasil dari penelitian ini menunjukkan bahwa baja ringan memiliki keunggulan yang signifikan dalam meningkatkan ketahanan jembatan gantung terhadap beban seismik. Hasil analisis FEA dan data eksperimen menunjukkan bahwa baja ringan mampu meredam getaran gempa dengan lebih efektif dibandingkan baja konvensional. Fleksibilitas dan bobotnya yang lebih ringan memungkinkan baja ringan untuk menyerap energi gempa dengan lebih baik, mengurangi gaya geser, serta mempercepat redaman osilasi struktural. Hal ini membuat baja ringan lebih aman dan lebih adaptif terhadap guncangan seismik, terutama pada frekuensi tinggi yang sering kali berbahaya bagi struktur jembatan gantung.

Selain keunggulan teknisnya, baja ringan juga terbukti lebih efisien dari segi ekonomi. Biaya produksi, transportasi, dan pemasangannya yang lebih rendah dibandingkan baja konvensional membuat material ini menjadi pilihan yang lebih hemat untuk pembangunan jembatan di daerah rawan gempa. Selain itu, perawatan baja ringan juga lebih sederhana dan murah karena ketahanannya terhadap korosi lebih baik dibandingkan baja konvensional. Dengan umur pakai yang lebih panjang serta kemampuan beradaptasi dengan sistem peredam seismik, baja ringan memberikan keuntungan jangka panjang dalam pengurangan biaya pemeliharaan dan perbaikan struktur jembatan.

Temuan ini memiliki implikasi besar terhadap standar desain jembatan gantung di Indonesia. Dengan mempertimbangkan risiko seismik yang tinggi di banyak wilayah, penggunaan baja ringan dalam konstruksi jembatan gantung harus diprioritaskan dalam revisi regulasi infrastruktur. Penerapan sistem modular dan kombinasi dengan teknologi peredam seismik juga perlu diperhitungkan dalam perancangan jembatan yang lebih aman dan tahan gempa. Oleh karena itu, hasil penelitian ini dapat menjadi acuan bagi pemerintah dan para insinyur dalam membangun jembatan gantung yang lebih andal dan berkelanjutan di Indonesia.

DAFTAR PUSTAKA

AASHTO. (2023). *Guide Specifications for Seismic Bridge Design*. American Association of State Highway and Transportation Officials.

Aydan, Ö. (2019). Seismic Performance of Suspension Bridges in Active Tectonic Regions. Earthquake Engineering and Structural Dynamics, 48(9), 1134-1152.

Ban, H., Zhang, J., & Li, J. (2021). Durability and Corrosion Resistance of Lightweight Steel Structures. Journal of Constructional Steel Research, 184, 106828.

BMKG. (2023). Peta Seismik Nasional Indonesia. Badan Meteorologi, Klimatologi, dan Geofisika.

Chen, Y., Wu, G., & Zheng, S. (2021). Seismic Design of Highway Bridges: Advances and Challenges. Engineering Structures, 235, 111887.

Fan, J., & Ma, R. (2020). Performance of Suspension Bridges Under Dynamic Loads. Journal of Bridge Engineering, 25(4), 04020012.

Hassan, M., Ryu, J., & Park, H. (2022). Dynamic Behavior of Suspension Bridges Under Earthquake Excitation. Earthquake Engineering Journal, 48(2), 276-290.

Kim, S., & Lee, J. (2020). Finite Element Analysis of Lightweight Steel Bridges for Seismic Resistance. International Journal of Structural Engineering, 11(3), 204-219.

Li, X., Wang, Y., & Zhang, P. (2020). Structural Response of Lightweight Bridges to Seismic Loads. Structural Safety, 87, 102014.

Park, H., Kim, Y., & Cho, J. (2022). *Modular Fabrication Techniques for Lightweight Steel Bridges*. *Construction and Building Materials*, 320, 126119.

Li, X., Wang, Y., & Zhang, P. (2020). Structural Response of Lightweight Bridges to Seismic Loads. Structural Safety, 87, 102014.

Park, H., Kim, Y., & Cho, J. (2022). *Modular Fabrication Techniques for Lightweight Steel Bridges*. *Construction and Building Materials*, 320, 126119.

UNDRR. (2022). Reducing Disaster Risks Through Infrastructure Resilience. United Nations Office for Disaster Risk Reduction.

Wang, L., Xu, T., & Liu, Z. (2021). Economic and Structural Feasibility of Lightweight Steel Bridges. *Journal of Infrastructure Systems*, 27(2), 05021003.

Zhang, H., Sun, J., & Li, X. (2021). Properties and Applications of Lightweight Steel in Bridge Construction. Journal of Materials in Civil Engine.

Andika, R., & Prasetyo, B. (2020). *Analisis ketahanan jembatan gantung terhadap beban seismik di Indonesia*. Jurnal Rekayasa Sipil dan Lingkungan, 8(2), 112-120.

Sari, M. D., & Hidayat, T. (2021). Evaluasi kinerja struktural jembatan baja ringan dalam menghadapi gempa di daerah rawan bencana. Jurnal Teknik Sipil Indonesia, 15(1), 77-88.

Wahyudi, F., & Nasution, R. (2019). *Analisis dinamis jembatan gantung dengan variasi material struktur untuk meningkatkan ketahanan seismik*. Jurnal Infrastruktur dan Konstruksi, 10(3), 213-225.

Arsyad, M., & Putra, A. (2022). *Kajian stabilitas jembatan baja di daerah gempa Sulawesi menggunakan metode elemen hingga*. Jurnal Ilmiah Teknik Sipil, 14(2), 98-110.

Nugroho, B. P., & Santoso, W. (2020). Evaluasi kegagalan struktural jembatan gantung pascagempa di wilayah Sumatera Barat. Jurnal Rekayasa Struktural, 17(1), 56-68.

Hakim, A. R., & Yusuf, T. (2021). Pengaruh baja ringan terhadap reduksi beban inersia pada jembatan gantung di daerah rawan gempa. Jurnal Teknik Infrastruktur, 9(4), 145-159.

Ramadhan, D., & Setiawan, R. (2020). Simulasi getaran jembatan baja ringan terhadap skala gempa berbeda menggunakan software SAP2000. Jurnal Teknik Sipil Nusantara, 11(3), 189-203.

Lestari, N., & Sudirman, B. (2022). *Efektivitas sistem peredam seismik pada jembatan gantung berbasis baja ringan*. Jurnal Rekayasa Konstruksi, 12(1), 67-79.

Widodo, S., & Pratama, H. (2019). *Studi performa struktur jembatan baja ringan dengan analisis nonlinier pada kondisi gempa*. Jurnal Teknik Bangunan, 8(2), 134-147